
Distributed Computing Toolbox 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Distributed Computing Toolbox User’s Guide

© COPYRIGHT 2004–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2004 Online only New for Version 1.0 (Release 14SP1+)
March 2005 Online only Revised for Version 1.0.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.0.2 (Release 14SP3)
November 2005 Online only Revised for Version 2.0 (Release 14SP3+)
March 2006 Online only Revised for Version 2.0.1 (Release 2006a)
September 2006 Online only Revised for Version 3.0 (Release 2006b)
March 2007 Online only Revised for Version 3.1 (Release 2007a)
September 2007 Online only Revised for Version 3.2 (Release 2007b)

Contents

Getting Started

1
What Are the Distributed Computing Products? 1-2

Determining Product Installation and Versions 1-3

Toolbox and Engine Components . 1-4
Job Managers, Workers, and Clients 1-4
Local Scheduler . 1-6
Third-Party Schedulers . 1-6
Components on Mixed Platforms or Heterogeneous

Clusters . 1-7
MATLAB Distributed Computing Engine Service 1-8
Components Represented in the Client 1-8

Using Distributed Computing Toolbox 1-9
Example: Evaluating a Basic Function 1-9
Example: Programming a Basic Job with a Local

Scheduler . 1-9

Getting Help . 1-11
Command-Line Help . 1-11
Help Browser . 1-12

Programming Overview

2
Program Development Guidelines 2-2

Life Cycle of a Job . 2-4

Programming with User Configurations 2-6
Defining Configurations . 2-6

v

Exporting and Importing Configurations 2-12
Applying Configurations in Client Code 2-12

Programming Tips and Notes . 2-15
Saving or Sending Objects . 2-15
Current Working Directory of a MATLAB Worker 2-15
Using clear functions . 2-16
Running Tasks That Call Simulink 2-16
Using the pause Function . 2-16
Transmitting Large Amounts of Data 2-16
Interrupting a Job . 2-16
IPv6 on Macintosh . 2-17
Speeding Up a Job . 2-17

Using the Parallel Profiler . 2-18
Introduction . 2-18
Collecting Parallel Profile Data . 2-18
Viewing Parallel Profile Data . 2-19

Troubleshooting and Debugging . 2-29
Object Data Size Limitations . 2-29
File Access and Permissions . 2-31
No Results or Failed Job . 2-33
Connection Problems Between the Client and Job

Manager . 2-34

Parallel for-Loops (parfor)

3
Getting Started with parfor . 3-2

Introduction . 3-2
When to Use parfor . 3-3
Setting up MATLAB Resources: matlabpool 3-3
Creating a parfor-Loop . 3-4
Differences Between for-Loops and parfor-Loops 3-5
Reduction Assignments . 3-6

Programming Considerations . 3-7
MATLAB Path . 3-7

vi Contents

Error Handling . 3-7
Limitations . 3-8
Performance Considerations . 3-10
Compatibility with Earlier Versions of MATLAB 3-11

Advanced Topics . 3-12
About Programming Notes . 3-12
Classification of Variables . 3-12
Improving Performance . 3-26

Interactive Parallel Mode (pmode)

4
Introduction . 4-2

Getting Started with Interactive Parallel Mode 4-3

Parallel Command Window . 4-11

Running pmode on a Cluster . 4-17

Plotting in pmode . 4-18

Limitations and Unexpected Results 4-20
Distributing Nonreplicated Arrays 4-20
Using Graphics in pmode . 4-21

Troubleshooting . 4-22
Hostname Resolution . 4-22
Socket Connections . 4-22

vii

Evaluating Functions in a Cluster

5
Evaluating Functions Synchronously 5-2

Scope of dfeval . 5-2
Arguments of dfeval . 5-3
Example — Using dfeval . 5-4

Evaluating Functions Asynchronously 5-8

Programming Distributed Jobs

6
Using a Local Scheduler . 6-2

Creating and Running Jobs with a Local Scheduler 6-2
Local Scheduler Behavior . 6-6

Using a Job Manager . 6-7
Creating and Running Jobs with a Job Manager 6-7
Sharing Code . 6-12
Managing Objects in the Job Manager 6-14

Using a Fully Supported Third-Party Scheduler 6-18
Creating and Running Jobs with an LSF or CCS

Scheduler . 6-18
Sharing Code . 6-25
Managing Objects . 6-27

Using the Generic Scheduler Interface 6-30
Overview . 6-30
MATLAB Client Submit Function . 6-31
Example — Writing the Submit Function 6-35
MATLAB Worker Decode Function 6-36
Example — Writing the Decode Function 6-38
Example — Programming and Running a Job in the

Client . 6-39
Supplied Submit and Decode Functions 6-44
Summary . 6-45

viii Contents

Programming Parallel Jobs

7
Introduction . 7-2

Using a Supported Scheduler . 7-4
Coding the Task Function . 7-4
Coding in the Client . 7-5

Using the Generic Scheduler Interface 7-7
Introduction . 7-7
Coding in the Client . 7-7

Further Notes on Parallel Jobs . 7-10
Number of Tasks in a Parallel Job . 7-10
Avoiding Deadlock and Other Dependency Errors 7-10

Parallel Math

8
Array Types . 8-2

Introduction . 8-2
Nondistributed Arrays . 8-2
Distributed Arrays . 8-4

Working with Distributed Arrays 8-5
How MATLAB Distributes Arrays . 8-5
Creating a Distributed Array . 8-7
Local Arrays . 8-10
Obtaining Information About the Array 8-11
Changing the Dimension of Distribution 8-13
Restoring the Full Array . 8-14
Indexing into a Distributed Array . 8-15

Using a for-Loop Over a Distributed Range
(for-drange) . 8-17
Parallelizing a for-Loop . 8-17
Distributed Arrays in a for-drange Loop 8-18

ix

Using MATLAB Functions on Distributed Arrays 8-20

Objects — By Category

9
Scheduler Objects . 9-2

Job Objects . 9-2

Task Objects . 9-3

Worker Objects . 9-3

Objects — Alphabetical List

10

Functions — By Category

11
General Toolbox Functions . 11-2

Job Manager Functions . 11-3

Scheduler Functions . 11-3

Job Functions . 11-4

Task Functions . 11-4

Toolbox Functions Used in Parallel Jobs and pmode . . 11-5

x Contents

Toolbox Functions Used in MATLAB Workers 11-7

Functions — Alphabetical List

12

Properties — By Category

13
Job Manager Properties . 13-2

Scheduler Properties . 13-3

Job Properties . 13-4

Task Properties . 13-6

Worker Properties . 13-7

Properties — Alphabetical List

14

Glossary

Index

xi

xii Contents

1

Getting Started

This chapter provides information you need to get started with Distributed
Computing Toolbox and MATLAB® Distributed Computing Engine. The
sections are as follows.

What Are the Distributed Computing
Products? (p. 1-2)

Overview of Distributed Computing
Toolbox and MATLAB Distributed
Computing Engine, and their
capabilities

Toolbox and Engine Components
(p. 1-4)

Descriptions of the parts and
configurations of a distributed
computing setup

Using Distributed Computing
Toolbox (p. 1-9)

Introduction to Distributed
Computing Toolbox programming
with a basic example

Getting Help (p. 1-11) Explanation of how to get help on
toolbox functions

1 Getting Started

What Are the Distributed Computing Products?
Distributed Computing Toolbox and MATLAB Distributed Computing Engine
enable you to coordinate and execute independent MATLAB operations
simultaneously on a cluster of computers, speeding up execution of large
MATLAB jobs.

A job is some large operation that you need to perform in your MATLAB
session. A job is broken down into segments called tasks. You decide how best
to divide your job into tasks. You could divide your job into identical tasks,
but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the
client session. Often, this is on the machine where you program MATLAB.
The client uses Distributed Computing Toolbox to perform the definition
of jobs and tasks. MATLAB Distributed Computing Engine is the product
that performs the execution of your job by evaluating each of its tasks and
returning the result to your client session.

The job manager is the part of the engine that coordinates the execution of
jobs and the evaluation of their tasks. The job manager distributes the tasks
for evaluation to the engine’s individual MATLAB sessions called workers.
Use of the MathWorks job manager is optional; the distribution of tasks to
workers can also be performed by a third-party scheduler, such as Windows
CCS or Platform LSF.

See the “Glossary” on page Glossary-1 for definitions of the distributed
computing terms used in this manual.

1-2

What Are the Distributed Computing Products?

��������	
��

�������

	

�	��������

�������������
���������	

��
������

�������

����������������	

��
������������	

��������	
��

����������������	

��
������������	

��������	
��

����������������	

��
������������	

Basic Distributed Computing Configuration

Determining Product Installation and Versions
To determine if Distributed Computing Toolbox is installed on your system,
type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

You can run the ver command as part of a task in a distributed application
to determine what version of MATLAB Distributed Computing Engine is
installed on a worker machine. Note that the toolbox and engine must be
the same version.

1-3

1 Getting Started

Toolbox and Engine Components

In this section...

“Job Managers, Workers, and Clients” on page 1-4

“Local Scheduler” on page 1-6

“Third-Party Schedulers” on page 1-6

“Components on Mixed Platforms or Heterogeneous Clusters” on page 1-7

“MATLAB Distributed Computing Engine Service” on page 1-8

“Components Represented in the Client” on page 1-8

Job Managers, Workers, and Clients
The job manager can be run on any machine on the network. The job manager
runs jobs in the order in which they are submitted, unless any jobs in its
queue are promoted, demoted, canceled, or destroyed.

Each worker is given a task from the running job by the job manager, executes
the task, returns the result to the job manager, and then is given another
task. When all tasks for a running job have been assigned to workers, the job
manager starts running the next job with the next available worker.

A MATLAB Distributed Computing Engine setup usually includes many
workers that can all execute tasks simultaneously, speeding up execution of
large MATLAB jobs. It is generally not important which worker executes a
specific task. The workers evaluate tasks one at a time, returning the results
to the job manager. The job manager then returns the results of all the tasks
in the job to the client session.

Note For testing your application locally or other purposes, you can configure
a single computer as client, worker, and job manager. You can also have more
than one worker session or more than one job manager session on a machine.

1-4

Toolbox and Engine Components

�	
��

�������

	

�	��������

������

�	
��

�	
��

������

�	�

�����������

�	�

�����������

����

�������

����

�������

����

�������

Interactions of Distributed Computing Sessions

A large network might include several job managers as well as several
client sessions. Any client session can create, run, and access jobs on any
job manager, but a worker session is registered with and dedicated to only
one job manager at a time. The following figure shows a configuration with
multiple job managers.

������

�	
��

�	
��

�	
��

������

�������

	

�	��������

�	
��

�	
��

�	
��

������

������

�������

	

�	��������

Configuration with Multiple Clients and Job Managers

1-5

1 Getting Started

Local Scheduler
A feature of Distributed Computing Toolbox is the ability to run a local
scheduler and up to four workers on the client machine, so that you can run
distributed and parallel jobs without requiring a remote cluster or MATLAB
Distributed Computing Engine. In this case, all the processing required for
the client, scheduling, and task evaluation is performed on the same computer.
This gives you the opportunity to develop, test, and debug your distributed or
parallel application before running it on your cluster.

Third-Party Schedulers
As an alternative to using the MathWorks job manager, you can use a
third-party scheduler. This could be Windows CCS, Platform Computing
LSF, mpiexec, or a generic scheduler.

Choosing Between a Third-Party Scheduler and Job Manager
You should consider the following when deciding to use a scheduler or the
MathWorks job manager for distributing your tasks:

• Does your cluster already have a scheduler?

If you already have a scheduler, you may be required to use it as a means
of controlling access to the cluster. Your existing scheduler might be just
as easy to use as a job manager, so there might be no need for the extra
administration involved.

• Is the handling of distributed computing jobs the only cluster scheduling
management you need?

The MathWorks job manager is designed specifically for MathWorks
distributed computing applications. If other scheduling tasks are not
needed, a third-party scheduler might not offer any advantages.

• Is there a file sharing configuration on your cluster already?

The MathWorks job manager can handle all file and data sharing necessary
for your distributed computing applications. This might be helpful in
configurations where shared access is limited.

• Are you interested in batch mode or managed interactive processing?

1-6

Toolbox and Engine Components

When you use a job manager, worker processes usually remain running at
all times, dedicated to their job manager. With a third-party scheduler,
workers are run as applications that are started for the evaluation of tasks,
and stopped when their tasks are complete. If tasks are small or take little
time, starting a worker for each one might involve too much overhead time.

• Are there security concerns?

Your own scheduler may be configured to accommodate your particular
security requirements.

• How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult
your MathWorks representative if you have questions about cluster size
and the job manager.

• Who administers your cluster?

The person administering your cluster might have a preference for how
jobs are scheduled.

• Do you need to monitor your job’s progress or access intermediate data?

A job run by the job manager supports events and callbacks, so that
particular functions can run as each job and task progresses from one state
to another.

Components on Mixed Platforms or Heterogeneous
Clusters
Distributed Computing Toolbox and MATLAB Distributed Computing Engine
are supported on Windows, UNIX, and Macintosh platforms. Mixed platforms
are supported, so that the clients, job managers, and workers do not have to
be on the same platform. The cluster can also be comprised of both 32-bit and
64-bit machines, so long as your data does not exceed the limitations posed
by the 32-bit systems.

In a mixed-platform environment, system administrators should be sure to
follow the proper installation instructions for the local machine on which you
are installing the software.

1-7

1 Getting Started

MATLAB Distributed Computing Engine Service
If you are using the MathWorks job manager, every machine that hosts a
worker or job manager session must also run the MATLAB Distributed
Computing Engine (mdce) service.

The mdce service controls the worker and job manager sessions and recovers
them when their host machines crash. If a worker or job manager machine
crashes, when the mdce service starts up again (usually configured to start
at machine boot time), it automatically restarts the job manager and worker
sessions to resume their sessions from before the system crash. These
processes are covered more fully in the MATLAB Distributed Computing
Engine System Administrator’s Guide.

Components Represented in the Client
A client session communicates with the job manager by calling methods and
configuring properties of a job manager object. Though not often necessary,
the client session can also access information about a worker session through
a worker object.

When you create a job in the client session, the job actually exists in the job
manager or in the scheduler’s data location. The client session has access to
the job through a job object. Likewise, tasks that you define for a job in the
client session exist in the job manager or in the scheduler’s data location, and
you access them through task objects.

1-8

Using Distributed Computing Toolbox

Using Distributed Computing Toolbox

In this section...

“Example: Evaluating a Basic Function” on page 1-9

“Example: Programming a Basic Job with a Local Scheduler” on page 1-9

Example: Evaluating a Basic Function
The dfeval function allows you to evaluate a function in a cluster of workers
without having to individually define jobs and tasks yourself. When you can
divide your job into similar tasks, using dfeval might be an appropriate
way to run your job. The following code uses a local scheduler on your client
computer for dfeval.

results = dfeval(@sum, {[1 1] [2 2] [3 3]}, 'Configuration', 'local')

results =

[2]

[4]

[6]

This example runs the job as three tasks in three separate MATLAB worker
sessions, reporting the results back to the session from which you ran dfeval.

For more information about dfeval and in what circumstances you can use it,
see Chapter 5, “Evaluating Functions in a Cluster”.

Example: Programming a Basic Job with a Local
Scheduler
In some situations, you might need to define the individual tasks of a job,
perhaps because they might evaluate different functions or have uniquely
structured arguments. To program a job like this, the typical Distributed
Computing Toolbox client session includes the steps shown in the following
example.

This example illustrates the basic steps in creating and running a job that
contains a few simple tasks. Each task evaluates the sum function for an
input array.

1-9

1 Getting Started

1 Identify a scheduler. Use findResource to indicate that you are using the
local scheduler and create the object sched, which represents the scheduler.
(For more information, see “Find a Job Manager” on page 6-7 or “Creating
and Running Jobs with an LSF or CCS Scheduler” on page 6-18.)

sched = findResource('scheduler', 'type', 'local')

2 Create a job. Create job j on the scheduler. (For more information, see
“Create a Job” on page 6-9.)

j = createJob(sched)

3 Create three tasks within the job j. Each task evaluates the sum of the
array that is passed as an input argument. (For more information, see
“Create Tasks” on page 6-10.)

createTask(j, @sum, 1, {[1 1]})
createTask(j, @sum, 1, {[2 2]})
createTask(j, @sum, 1, {[3 3]})

4 Submit the job to the scheduler queue for evaluation. The scheduler then
distributes the job’s tasks to MATLAB workers that are available for
evaluating. The local scheduler actually starts a MATLAB worker session
for each task, up to four at one time. (For more information, see “Submit a
Job to the Job Queue” on page 6-11.)

submit(j);

5 Wait for the job to complete, then get the results from all the tasks of the
job. (For more information, see “Retrieve the Job’s Results” on page 6-11.)

waitForState(j)
results = getAllOutputArguments(j)
results =

[2]
[4]
[6]

6 Destroy the job. When you have the results, you can permanently remove
the job from the scheduler’s data location.

destroy(j)

1-10

Getting Help

Getting Help

In this section...

“Command-Line Help” on page 1-11

“Help Browser” on page 1-12

Command-Line Help
You can get command-line help on the object functions in Distributed
Computing Toolbox by using the syntax

help distcomp.objectType/functionName

For example, to get command-line help on the createTask function, type

help distcomp.job/createTask

The available choices for objectType are jobmanager, job, and task.

Listing Available Functions
To find the functions available for each type of object, type

methods(obj)

where obj is an object of one of the available types.

For example, to see the functions available for job manager objects, type

jm = findResource('scheduler','type','jobmanager');
methods(jm)

To see the functions available for job objects, type

job1 = createJob(jm)
methods(job1)

To see the functions available for task objects, type

task1 = createTask(job1,1,@rand,{3})
methods(task1)

1-11

1 Getting Started

Help Browser
You can open the Help browser with the doc command. To open the browser
on a specific reference page for a function or property, type

doc distcomp/RefName

where RefName is the name of the function or property whose reference page
you want to read.

For example, to open the Help browser on the reference page for the
createJob function, type

doc distcomp/createjob

To open the Help browser on the reference page for the UserData property,
type

doc distcomp/userdata

Note You must enter the property or function name with lowercase letters,
even though function names are case sensitive in other situations.

1-12

2

Programming Overview

This chapter provides information you need for programming with Distributed
Computing Toolbox. The specifics of evaluating functions in a cluster,
programming distributed jobs, and programming parallel jobs are covered
in later chapters. This chapter describes features common to all the
programming options. The sections are as follows.

Program Development Guidelines
(p. 2-2)

Suggested method for program
development

Life Cycle of a Job (p. 2-4) Stages of a job from creation to
completion

Programming with User
Configurations (p. 2-6)

How to employ configurations for
parameters and properties in your
program

Programming Tips and Notes
(p. 2-15)

Provides helpful hints for good
programming practice

Using the Parallel Profiler (p. 2-18) Describes how to use the parallel
profile to determine the calculation
and communications time for each
lab

Troubleshooting and Debugging
(p. 2-29)

Describes common programming
errors and how to avoid them

2 Programming Overview

Program Development Guidelines
When writing code for Distributed Computing Toolbox, you should advance
one step at a time in the complexity of your application. Verifying your
program at each step prevents your having to debug several potential
problems simultaneously. If you run into any problems at any step along the
way, back up to the previous step and reverify your code.

The recommended programming practice for distributed computing
applications is

1 Run code normally on your local machine. First verify all your
functions so that as you progress, you are not trying to debug the
functions and the distribution at the same time. Run your functions in
a single instance of MATLAB on your local computer. For programming
suggestions, see “Techniques for Improving Performance” in the MATLAB
documentation.

2 Decide whether you need a distributed or parallel job. If your
application involves large data sets on which you need simultaneous
calculations performed, you might benefit from a parallel job with
distributed arrays. If your application involves looped or repetitive
calculations that can be performed independently of each other, a
distributed job might be appropriate.

3 Modify your code for division. Decide how you want your code divided.
For a distributed job, determine how best to divide it into tasks; for
example, each iteration of a for-loop might define one task. For a parallel
job, determine how best to take advantage of parallel processing; for
example, a large array can be distributed across all your labs.

4 Use interactive parallel mode (pmode) to develop parallel
functionality. Use pmode with the local scheduler to develop your
functions on several workers (labs) in parallel. As you progress and use
pmode on the remote cluster, that might be all you need to complete your
work.

5 Run the distributed or parallel job with a local scheduler. Create a
parallel or distributed job, and run the job using the local scheduler with
several local workers. This verifies that your code is correctly set up for

2-2

Program Development Guidelines

batch execution, and in the case of a distributed job, that its computations
are properly divided into tasks.

6 Run the distributed job on only one cluster node. Run your
distributed job with one task to verify that remote distribution is
working between your client and the cluster, and to verify file and path
dependencies.

7 Run the distributed or parallel job on multiple cluster nodes. Scale
up your job to include as many tasks as you need for a distributed job, or as
many workers (labs) as you need for a parallel job.

Note The client session of MATLAB must be running the Java Virtual
Machine (JVM) to use Distributed Computing Toolbox. Do not start MATLAB
with the -nojvm flag.

2-3

2 Programming Overview

Life Cycle of a Job
When you create and run a job, it progresses through a number of stages.
Each stage of a job is reflected in the value of the job object’s State property,
which can be pending, queued, running, or finished. Each of these stages
is briefly described in this section.

The figure below illustrated the stages in the life cycle of a job. In the
job manager, the jobs are shown categorized by their state. Some of
the functions you use for managing a job are createJob, submit, and
getAllOutputArguments.

��������	

����

��	��	

��	��	

��	��	

���
���

���
���

���
���
���

���

���

���

���
���
���

���

��������	

�	�
�

�������

�	�	��
	�����

�����
��

��������������������

��	��	

��	��	

Stages of a Job

The following table describes each stage in the life cycle of a job.

Job Stage Description

Pending You create a job on the scheduler with the createJob
function in your client session of Distributed Computing
Toolbox. The job’s first state is pending. This is when
you define the job by adding tasks to it.

2-4

Life Cycle of a Job

Job Stage Description

Queued When you execute the submit function on a job, the
scheduler places the job in the queue, and the job’s
state is queued. The scheduler executes jobs in the
queue in the sequence in which they are submitted, all
jobs moving up the queue as the jobs before them are
finished. You can change the order of the jobs in the
queue with the promote and demote functions.

Running When a job reaches the top of the queue, the scheduler
distributes the job’s tasks to worker sessions for
evaluation. The job’s state is running. If more workers
are available than necessary for a job’s tasks, the
scheduler begins executing the next job. In this way,
there can be more than one job running at a time.

Finished When all of a job’s tasks have been evaluated, a job is
moved to the finished state. At this time, you can
retrieve the results from all the tasks in the job with the
function getAllOutputArguments.

Failed When using a third-party scheduler, a job might fail if
the scheduler encounters an error when attempting to
execute its commands or access necessary files.

Note that when a job is finished, it remains in the job manager or
DataLocation directory, even if you clear all the objects from the client
session. The job manager or scheduler keeps all the jobs it has executed, until
you restart the job manager in a clean state. Therefore, you can retrieve
information from a job at a later time or in another client session, so long as
the job manager has not been restarted with the -clean option.

To permanently remove completed jobs from the job manager or scheduler’s
data location, use the destroy function.

2-5

2 Programming Overview

Programming with User Configurations

In this section...

“Defining Configurations” on page 2-6

“Exporting and Importing Configurations” on page 2-12

“Applying Configurations in Client Code” on page 2-12

Defining Configurations
Configurations allow you to define certain parameters and properties, then
have your settings applied when creating objects in the MATLAB client. The
functions that support the use of configurations are

• createJob

• createParallelJob

• createTask

• dfeval

• dfevalasync

• findResource

• matlabpool (also supports default configuration)

• pmode (also supports default configuration)

• set

You create and modify configurations through the Configurations
Manager. You access the Configurations Manager using the Distributed
pull-down menu on the MATLAB desktop. Click Distributed > Manage
Configurations to open the Configurations Manger.

2-6

Programming with User Configurations

The first time you open the Configurations Manager, it lists only one
configuration called local, which at first is the default configuration and has
only default settings.

The following example provides instructions on how to create and modify
configurations using the Configurations Manager and its menus and dialog
boxes.

Example — Creating and Modifying User Configurations
Suppose you want to create a configuration to set several properties for some
jobs being run by a job manager.

1 In the Configurations Manager, click New > jobmanager. This specifies
that you want a new configuration whose type of scheduler is a job manager.

This opens a new Job Manager Configuration Properties dialog box.

2-7

2 Programming Overview

2 Enter a configuration name MyJMconfig1 and a description as shown in
the following figure. In the Scheduler tab, enter the host name for the
machine on which the job manager is running and the name of the job
manager. If you are entering information for an actual job manager already
running on your network, enter the appropriate text. If you are unsure
about job manager names and locations on your network, ask your system
administrator for help.

2-8

Programming with User Configurations

3 In the Jobs tab, enter 4 and 4 for the maximum and minimum number of
workers. This specifies that for jobs using this configuration, they require
at least four workers and use no more than four workers. Therefore, the
job runs on exactly four workers, even if it has to wait until four workers
are available before starting.

4 Click OK to save the configuration and close the dialog box. Your new
configuration now appears in the Configurations Manager listing.

2-9

2 Programming Overview

5 To create a similar configuration with just a few differences, you can
duplicate an existing configuration and modify only the parts you need to
change:

a In the Configurations Manager, right-click the configuration
MyJMconfig1 in the list and select Duplicate.

The duplicate configuration is created with a default name, already
highlighted for you to edit.

b Change the name of the new configuration to MyJMconfig2.

c Click twice, slowly (not a rapid double-click), in the description field of
the new configuration. You can now edit the description field to change
its text to My job manager and any workers.

So far, the new configuration has a new name and description, but all its
properties are identical to those of the original MyJMConfig1 configuration.

6 Double-click the MyJMconfig2 entry in the configurations list. This opens
the properties dialog box for that configuration. The new name and
description are already set in the top fields.

2-10

Programming with User Configurations

7 Select the Jobs tab. Remove the 4 from each of the fields for minimum and
maximum workers.

8 Click OK to save the configuration and close the dialog box.

You now have two configurations that differ only in the number of workers
required for running a job. After creating a job, you can apply either
configuration to that job as a way of specifying how many workers it should
run on.

2-11

2 Programming Overview

Exporting and Importing Configurations
Configurations are stored as part of your MATLAB preferences, so they are
generally available on an individual user basis. To make a configuration
available to someone else, you can export it to a separate .mat file. In this way,
a repository of configurations can be created so that all users of a distributed
computing cluster can share common configurations.

To export a configuration:

1 In the Configuration Manager, select (highlight) the configuration you
want to export.

2 Click File > Export. (Alternatively, you can right-click the configuration
in the listing and select Export.)

3 In the Export Configuration dialog box, specify a location and name for the
file. The default file name is the same as the name of the configuration
it contains, with a .mat extension appended; these do not need to be the
same, so you can alter the names if you want to.

Configurations saved in this way can then be imported by other MATLAB
users:

1 In the Configuration Manager, click File > Import.

2 In the Import Configuration dialog box, browse to find the .mat file for the
configuration you want to import. Select the file and click Import.

The imported configuration appears in your Configurations Manager list.
Note that the list contains the configuration name, which is not necessarily
the file name. If you already have a configuration with the same name as
the one you are importing, the imported configuration gets an extension
added to its name so you can distinguish it.

Applying Configurations in Client Code
In the MATLAB client where you create and define your distributed
computing objects, you can use configurations when creating the objects, or
you can apply configurations to objects that already exist.

2-12

Programming with User Configurations

Selecting a Default Configuration
Some functions support default configurations, so that if you do not specify a
configuration for them to use, they automatically apply the default. Currently,
pmode and matlabpool support default configurations.

There are several ways to specify which of your configurations should be used
as the default configuration:

• In the MATLAB desktop, click Distributed > Select Configuration,
and from there, all your configurations are available. The current default
configuration appears with a dot next to it. You can select any configuration
on the list as the default.

• In the Configurations Manager, the Default column indicates with a radio
button which configuration is currently the default configuration. You can
click any other button in this column to change the default configuration.

• You can get or set the default configuration programmatically by using the
defaultParallelConfig function. The following sets of commands achieve
the same thing:

defaultParallelConfig('MyJMconfig1')
matlabpool open

matlabpool open MyJMconfig1

Finding Schedulers
When executing the findResource function, you can use configurations to
identify a particular scheduler. For example,

jm = findResource('scheduler','configuration','our_jobmanager')

This command finds the scheduler defined by the settings of the configuration
named our_jobmanager . The advantage of configurations is that you can
alter your scheduler choices without changing your MATLAB application
code, merely by changing the configuration settings

For third-party schedulers, settable object properties can be defined in the
configuration and applied after findResource has created the scheduler
object. For example,

2-13

2 Programming Overview

lsfsched = findResource('scheduler', 'type', 'lsf');
set (lsfsched, 'configuration', 'my_lsf_config');

Setting Job and Task Properties
You can set the properties of a job or task with configurations when you create
the objects, or you can apply a configuration after you create the object. The
following code creates and configures two jobs with the same property values.

job1 = createJob(jm, 'Configuration', 'our_jobmanager_config')
job2 = createJob(jm)
set(job2, 'Configuration', 'our_jobmanager_config')

Notice that the Configuration property of a job indicates the configuration
that was applied to the job.

get(job1, 'Configuration')
our_jobmanager_config

When you apply a configuration to an object, all the properties defined in
that configuration get applied to the object, and the object’s Configuration
property is set to reflect the name of the configuration that you applied. If
you later directly change any of the object’s individual properties, the object’s
configuration property is cleared.

Writing Scheduler-Independent Jobs
Because the properties of scheduler, job, and task objects can be defined in a
configuration, you do not have to define them in your application. Therefore,
the code itself can accommodate any type of scheduler. For example,

sched = findResource('scheduler', 'configuration', 'MyConfig');
set(sched, 'Configuration', 'MyConfig');
job1 = createJob(sched, 'Configuration', 'MyConfig');
createTask(..., 'Configuration', 'MyConfig');

The configuration defined as MyConfig must define any and all properties
necessary and appropriate for your scheduler and configuration, and the
configuration must not include any parameters inconsistent with your setup.
All changes necessary to use a different scheduler can now be made in the
configuration, without any modification needed in the application.

2-14

Programming Tips and Notes

Programming Tips and Notes

In this section...

“Saving or Sending Objects” on page 2-15

“Current Working Directory of a MATLAB Worker” on page 2-15

“Using clear functions” on page 2-16

“Running Tasks That Call Simulink” on page 2-16

“Using the pause Function” on page 2-16

“Transmitting Large Amounts of Data” on page 2-16

“Interrupting a Job” on page 2-16

“IPv6 on Macintosh” on page 2-17

“Speeding Up a Job” on page 2-17

Saving or Sending Objects
Do not use the save or load function on Distributed Computing Toolbox
objects. Some of the information that these objects require is stored in the
MATLAB session persistent memory and would not be saved to a file.

Similarly, you cannot send a distributed computing object between distributed
computing processes by means of an object’s properties. For example, you
cannot pass a job manager, job, task, or worker object to MATLAB workers
as part of a job’s JobData property.

Current Working Directory of a MATLAB Worker
The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work

where CHECKPOINTBASE is defined in the mdce_def file, HOSTNAME is the name
of the node on which the worker is running, and WORKERNAME is the name of
the MATLAB worker session.

2-15

2 Programming Overview

For example, if the worker named worker22 is running on host nodeA52, and
its CHECKPOINTBASE value is C:\TEMP\MDCE\Checkpoint, the starting current
directory for that worker session is

C:\TEMP\MDCE\Checkpoint\nodeA52_worker22_mlworker_log\work

Using clear functions
Executing

clear functions

clears all Distributed Computing Toolbox objects from the current MATLAB
session. They still remain in the job manager. For information on recreating
these objects in the client session, see “Recovering Objects” on page 6-15.

Running Tasks That Call Simulink
The first task that runs on a worker session that uses Simulink® can take a
long time to run, as Simulink is not automatically started at the beginning of
the worker session. Instead, Simulink starts up when first called. Subsequent
tasks on that worker session will run faster, unless the worker is restarted
between tasks.

Using the pause Function
On worker sessions running on Macintosh or UNIX machines, pause(inf)
returns immediately, rather than pausing. This is to prevent a worker session
from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data
Operations that involve transmitting many objects or large amounts of data
over the network can take a long time. For example, getting a job’s Tasks
property or the results from all of a job’s tasks can take a long time if the job
contains many tasks.

Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use
Ctrl+C (^C) in the client session to interrupt them. To control or interrupt

2-16

Programming Tips and Notes

the execution of jobs and tasks, use such functions as cancel, destroy,
demote, promote, pause, and resume.

IPv6 on Macintosh
To allow multicast access between different distributed computing processes
run by different users on the same Macintosh computer, IPv6 addressing is
disabled for MATLAB with Distributed Computing Toolbox on a Macintosh.

Note Though DCT/MDCE Version 3 continues to support multicast
communications between its processes, multicast is not recommended and
might not be supported in future releases.

Speeding Up a Job
You might find that your code runs slower on multiple workers than it does
on one desktop computer. This can occur when task startup and stop time is
not negligible relative to the task run time. The most common mistake in
this regard is to make the tasks too small, i.e., too fine-grained. Another
common mistake is to send large amounts of input or output data with each
task. In both of these cases, the time it takes to transfer data and initialize
a task is far greater than the actual time it takes for the worker to evaluate
the task function.

2-17

2 Programming Overview

Using the Parallel Profiler

In this section...

“Introduction” on page 2-18

“Collecting Parallel Profile Data” on page 2-18

“Viewing Parallel Profile Data” on page 2-19

Introduction
The parallel profiler provides an extension of the profile command and the
profile viewer specifically for parallel jobs, to enable you to see how much time
each lab spends evaluating each function and how much time communicating
or waiting for communications with the other labs. Before using the parallel
profiler, familiarize yourself with the standard profiler and its views, as
described in “Profiling for Improving Performance”.

Note The parallel profiler works on parallel jobs, including inside pmode. It
does not work on parfor-loops.

Collecting Parallel Profile Data
For parallel profiling, you use the mpiprofile command within your parallel
job (often within pmode) in a similar way to how you use profile.

To turn on the parallel profiler to start collecting data, enter the following line
in your parallel job task M-file, or type at the pmode prompt in the Parallel
Command Window:

mpiprofile on

Now the profiler is collecting information about the execution of code on each
lab and the communications between the labs. Such information includes:

• Execution time of each function on each lab

• Execution time of each line of code in each function

• Amount of data transferred between each lab

2-18

Using the Parallel Profiler

• Amount of time each lab spends waiting for communications

With the parallel profiler on, you can proceed to execute your code while the
profiler collects the data.

In the pmode Parallel Command Window, to find out if the profiler is on, type:

P>> mpiprofile status

For a complete list of options regarding profiler data details, clearing data,
etc., see the mpiprofile reference page.

Viewing Parallel Profile Data
To open the parallel profile viewer from pmode, type in the Parallel Command
Window:

P>> mpiprofile viewer

The remainder of this section is an example that illustrates some of the
features of the parallel profile viewer. This example executes in a pmode
session running on four local labs. Initiate pmode by typing in the MATLAB
Command Window:

pmode start local 4

When the Parallel Command Window (pmode) starts, type the following code
at the pmode prompt:

P>> R1 = rand(16, darray)
P>> R2 = rand(16, darray)
P>> mpiprofile on
P>> P = R1*R2
P>> mpiprofile off
P>> mpiprofile viewer

2-19

2 Programming Overview

The last command opens the Profiler window, first showing the Parallel
Profile Summary (or function summary report) for lab 1.

The function summary report displays the data for each function executed on
a lab in sortable columns with the following headers:

Column Header Description

Calls How many times the function was called on this lab

Total Time The total amount of time this lab spent executing this
function

Self Time The time this lab spent inside this function, not within
children or subfunctions

Total Comm Time The total time this lab spent transferring data with
other labs, including waiting time to receive data

Self Comm
Waiting Time

The time this lab spent during this function waiting to
receive data from other labs

Total Interlab
Data

The amount of data transferred to and from this lab
for this function

2-20

Using the Parallel Profiler

Column Header Description

Computation
Time Ratio

The ratio of time spent in computation for this function
vs. total time (which includes communication time) for
this function

Total Time Plot Bar graph showing relative size of Self Time, Self
Comm Waiting Time, and Total Time for this function
on this lab

2-21

2 Programming Overview

Click the name of any function in the list for more details about the execution
of that function. The function detail report for darray.mtimes looks like this:

The code that is displayed in the report is taken from the client. If the code
has changed on the client since the parallel job ran on the labs, or if the
labs are running a different version of the functions, the display might not
accurately reflect what actually executed.

You can display information for each lab, or use the comparison controls to
display information for several labs simultaneously. Two buttons provide
Automatic Comparison Selection, allowing you to compare the data from
the labs that took the most versus the least amount of time to execute the code,
or data from the labs that spent the most versus the least amount of time in
performing interlab communication. Manual Comparison Selection allows
you to compare data from specific labs or labs that meet certain criteria.

2-22

Using the Parallel Profiler

The following summary report shows the result of using the Automatic
Comparison Selection of Compare (max vs. min TotalTime). The
comparison shows data from lab 3 compared to lab 4 because these are the
labs that spend the most versus least amount of time executing the code.

2-23

2 Programming Overview

The following figure shows a summary of all the functions executed during the
profile collection time. The Manual Comparison Selection of max Time
Aggregate means that data is considered from all the labs for all functions to
determine which lab spent the maximum time on each function. Next to each
function’s name is the lab that took the longest time to execute that function.
The other columns list the data from that lab.

2-24

Using the Parallel Profiler

The next figure shows a summary report for the labs that spend the most
versus least time for each function. A Manual Comparison Selection of
max Time Aggregate against min Time >0 Aggregate generated this
summary. Both aggregate settings indicate that the profiler should consider
data from all labs for all functions, for both maximum and minimum. This
report lists the data for darray.mtimes from labs 3 and 4 because they spent
the maximum and minimum times on this function. Likewise, data for
darray.darray is listed from labs 1 and 3.

2-25

2 Programming Overview

Click on a function name in the summary listing of a comparison to get a
detailed comparison. The detailed comparison for darray.mtimes looks like
this, displaying line-by-line data from both labs:

2-26

Using the Parallel Profiler

To see plots of communication data, select Plot All PerLab Communication
in the Show Figures menu. The top portion of the plot view report plots how
much data each lab receives from each other lab for all functions.

2-27

2 Programming Overview

To see only a plot of interlab communication times, select Plot
CommTimePerLab in the Show Figures menu.

Plots like those in the previous two figures can help you determine the best
way to balance work among your labs, perhaps by altering the partition
scheme of your distributed arrays.

2-28

Troubleshooting and Debugging

Troubleshooting and Debugging

In this section...

“Object Data Size Limitations” on page 2-29

“File Access and Permissions” on page 2-31

“No Results or Failed Job” on page 2-33

“Connection Problems Between the Client and Job Manager” on page 2-34

Object Data Size Limitations
By default, the size limit of data transfers among the distributed computing
objects is approximately 50 MB, determined by the Java Virtual Machine
(JVM) memory allocation limit. You can increase the amount of JVM memory
available to the distributed computing processes (clients, job manager, and
workers).

MATLAB Clients and Workers
You can find the current maximum JVM memory limit by typing the command

java.lang.Runtime.getRuntime.maxMemory
ans =

98172928

MATLAB clients and MATLAB workers allow up to approximately half of the
JVM memory limit for large data transfers. In the default case, half of the
approximately 100-MB limit is about 50 MB.

To increase the limit, create a file named java.opts that includes the -Xmx
option, specifying the amount of memory you want to give the JVM.

For example, to increase the JVM memory allocation limit to 200 MB, use the
following syntax in the java.opts file:

-Xmx200m

This increased limit allows approximately 100 MB of data to be transferred
with distributed computing objects.

2-29

2 Programming Overview

Note To avoid virtual memory thrashing, never set the -Xmx option to more
than 66% of the physical RAM available.

For MATLAB clients on UNIX or Macintosh systems, place the java.opts
file in a directory where you intend to start MATLAB, and move to that
directory before starting MATLAB.

For MATLAB clients on Windows systems

1 Create the java.opts file in a directory where you intend to start MATLAB.

2 Create a shortcut to MATLAB.

3 Right-click the shortcut and select Properties.

4 In the Properties dialog box, specify the name of the directory in which you
created the java.opts file as the MATLAB startup directory.

For computers running MATLAB workers, place the modified java.opts
file in

matlabroot/toolbox/distcomp/bin

Job Managers
For job managers, the Java memory allocation limit is set in the mdce_def file.

On Windows systems, this file can be found at

matlabroot/toolbox/distcomp/bin/mdce_def.sh

On UNIX and Macintosh systems, this file can be found at

matlabroot\toolbox\distcomp\bin\mdce_def.bat

The parameter in this file controlling the Java memory limit is
JOB_MANAGER_MAXIMUM_MEMORY. You should set this limit to four times the
value you need for data transfers in your job. For example, to accommodate
data transfers of 100 MB, modify the line for UNIX or Macintosh to read

2-30

Troubleshooting and Debugging

JOB_MANAGER_MAXIMUM_MEMORY="400m"

Or for Windows, to read

set JOB_MANAGER_MAXIMUM_MEMORY=400m

Note Although you can increase the amount of data that you can transfer
between objects, it is probably more efficient to have the distributed
computing processes directly access large data sets in a shared file system.
See “Directly Accessing Files” on page 6-12.

File Access and Permissions

Ensuring That Windows Workers Can Access Files
By default, a worker on a Windows node is installed as a service running as
LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem
to access UNC or mapped network shares. In this case, you must run MDCE
under a different user with rights to log on as a service. See the section
“Setting the User” in the MATLAB Distributed Computing Engine System
Administrator’s Guide.

Task Function Is Unavailable
If a worker cannot find the task function, it returns the error message

Error using ==> feval
Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function
function_name. One solution is to make sure the location of the function’s
file, function_name.m, is included in the job’s PathDependencies property.
Another solution is to transfer the function file to the worker by adding
function_name.m to the FileDependencies property of the job.

2-31

2 Programming Overview

Load and Save Errors
If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

• What is the worker’s current directory?

• Can the worker find the file or directory?

• What user is the worker running as?

• Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State
A job or task might get stuck in the queued state. To investigate the cause of
this problem, look for the scheduler’s logs:

• LSF might send e-mails with error messages.

• CCS, LSF, and mpiexec save output messages in a debug log. See the
getDebugLog reference page.

• If using a generic scheduler, make sure the submit function redirects error
messages to a log file.

Possible causes of the problem are

• MATLAB failed to start due to licensing errors, is not on the default path
on the worker, or is not installed in the location where the scheduler
expected it to be.

• MATLAB could not read/write the job input/output files in the scheduler’s
data location. The data location may not be accessible to all the worker
nodes, or the user that MATLAB runs as does not have permission to
read/write the job files.

2-32

Troubleshooting and Debugging

• If using a generic scheduler

- The environment variable MDCE_DECODE_FUNCTION was not defined
before the MATLAB worker started.

- The decode function was not on the worker’s path.

• If using mpiexec

- The passphrase to smpd was incorrect or missing.

- The smpd daemon was not running on all the specified machines.

No Results or Failed Job

Task Errors
If your job returned no results (i.e., getAllOutputArguments(job) returns an
empty cell array), it is probable that the job failed and some of its tasks have
their ErrorMessage and ErrorIdentifier properties set.

You can use the following code to identify tasks with error messages:

errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job
object yourjob.

Debug Logs
If you are using a supported third-party scheduler, you can use the
getDebugLog function to read the debug log from the scheduler for a particular
job or task.

For example, find the failed job on your LSF scheduler, and read its debug log.

sched = findResource('scheduler', 'type', 'lsf')
failedjob = findJob(sched, 'State', 'failed');
message = getDebugLog(sched, failedjob(1))

2-33

2 Programming Overview

Connection Problems Between the Client and Job
Manager
Detailed instructions for diagnosing connection problems between the client
and job manager can be found in some of the Bug Reports listed on the
MathWorks Web site. The following sections can help you identify the general
nature of some connection problems.

Client Cannot See the Job Manager
If you cannot locate your job manager with

findResource('scheduler','type','jobmanager')

the most likely reasons for this failure are

• The client cannot contact the job manager host via multicast. Try to fully
specify where to look for the job manager by using the LookupURL property
in your call to findResource:

findResource('scheduler','type','jobmanager', ...
'LookupURL','JobMgrHostName')

• The job manager is currently not running.

• Firewalls do not allow traffic from the client to the job manager.

• The client and the job manager are not running the same version of the
software.

• The client and the job manager cannot resolve each other’s short hostnames.

Job Manager Cannot See the Client
If findResource displays a warning message that the job manager cannot
open a TCP connection to the client computer, the most likely reasons for
this are

• Firewalls do not allow traffic from the job manager to the client.

• The job manager cannot resolve the short hostname of the client computer.
Use dctconfig to change the hostname that the job manager will use for
contacting the client.

2-34

http://www.mathworks.com/support/bugreports/?product=DM&product=DW&release=R14SP3

3

Parallel for-Loops (parfor)

Getting Started with parfor (p. 3-2) The basic concept of parfor-loops
and how to begin programming them

Programming Considerations (p. 3-7) Requirements, limitations,
version compatibility, and other
considerations in programming
parfor-loops

Advanced Topics (p. 3-12) Detailed information about variable
classification and other topics to
help with optimization and error
handling

3 Parallel for-Loops (parfor)

Getting Started with parfor

In this section...

“Introduction” on page 3-2

“When to Use parfor” on page 3-3

“Setting up MATLAB Resources: matlabpool” on page 3-3

“Creating a parfor-Loop” on page 3-4

“Differences Between for-Loops and parfor-Loops” on page 3-5

“Reduction Assignments” on page 3-6

Introduction
The basic concept of a parallel for-loop (parfor-loop) in MATLAB is the same
as the standard MATLAB for-loop: MATLAB executes a series of statements
(the loop body) over a range of values. Part of the parfor body is executed
on the MATLAB client (where the parfor is issued) and part is executed in
parallel on MATLAB workers. The necessary data on which parfor operates
is sent from the client to workers, where most of the computation happens,
and the results are sent back to the client and pieced together.

Because several MATLAB workers can be computing concurrently on the
same loop, a parfor-loop can provide significantly better performance than
its analogous for-loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB workers
evaluate iterations in no particular order, and independently of each other. If
the number of workers is equal to the number of loop iterations, each iteration
defines a task for the workers. Because each iteration is independent, there
is no guarantee that the tasks are synchronized in any way, nor is there any
need for this. If there are more iterations than workers, each task comprises
more than one loop iteration.

3-2

Getting Started with parfor

When to Use parfor
A parfor-loop is useful in situations where you need many loop iterations of
a simple calculation, such as a Monte Carlo simulation. parfor divides the
loop iterations into groups so that each worker executes some portion of the
total number of iterations. parfor-loops are also useful when you have loop
iterations that take a long time to execute, because the workers can execute
iterations simultaneously.

You cannot use a parfor-loop when an iteration in your loop depends on the
results of other iterations. Each iteration must be independent of all others.
Since there is a communications cost involved in a parfor-loop, there might
be no advantage to using one when you have only a small number of simple
calculations. The example of this section are only to illustrate the behavior
of parfor-loops, not necessarily to demonstrate the applications best suited
to them.

Setting up MATLAB Resources: matlabpool
You use the function matlabpool to reserve a number of MATLAB workers
for executing a subsequent parfor-loop. Depending on your scheduler, the
workers might be running remotely on a cluster, or they might run locally on
your MATLAB client machine. You control all of this is by the configuration
you use for your cluster. For a description of how to manage and use
configurations, see “Programming with User Configurations” on page 2-6.

To begin the examples of this section, allocate local MATLAB workers for
the evaluation of your loop iterations:

matlabpool

This command by default starts four MATLAB worker sessions on your local
MATLAB client machine.

Note If matlabpool is not running, a parfor-loop runs serially on the client
without regard for iteration sequence.

3-3

3 Parallel for-Loops (parfor)

Creating a parfor-Loop
The safest assumption about a parfor-loop is that each iteration of the
loop is evaluated by a different MATLAB worker. If you have a for-loop in
which all iterations are completely independent of each other, this loop is a
good candidate for a parfor-loop. Basically, if one iteration depends on the
results of another iteration, these iterations are not independent and cannot
be evaluated in parallel, so the loop does not lend itself easily to conversion
to a parfor-loop.

The following examples produce equivalent results, with a for-loop on the
left, and a parfor-loop on the right. Try typing each in your MATLAB
Command Window. The parentheses in the parfor statement are necessary,
so be sure to include them:

clear A
for i = 1:8

A(i) = i;
end
A

clear A
parfor (i = 1:8)

A(i) = i;
end
A

Notice that each element of A is equal to its index. The parfor-loop works
because each element depends only upon its iteration of the loop, and upon
no other iterations. for-loops that merely repeat such independent tasks are
ideally suited candidates for parfor-loops.

3-4

Getting Started with parfor

Differences Between for-Loops and parfor-Loops
Because parfor-loops are not quite the same as for-loops, there are special
behaviors to be aware of. As seen from the preceding example, when you
assign to an array variable (such as A in that example) inside the loop by
indexing with the loop variable, the elements of that array are available to
you after the loop, much the same as with a for-loop.

However, suppose you use a nonindexed variable inside the loop, or a variable
whose indexing does not depend on the loop variable i. Try these examples
and notice the values of d and i afterward:

clear A
d = 0; i = 0;
for i = 1:4

d = i*2;
A(i) = d;

end
A
d
i

clear A
d = 0; i = 0;
parfor (i = 1:4)

d = i*2;
A(i) = d;

end
A
d
i

Although the elements of A come out the same in both of these examples, the
value of d does not. In the for-loop above on the left, the iterations execute
in sequence, so afterward d has the value it held in the last iteration of the
loop. In the parfor-loop on the right, the iterations execute in parallel, not in
sequence, so it would be impossible to assign d a definitive value at the end
of the loop. This also applies to the loop variable, i. Therefore, parfor-loop
is behavior is defined so that it does not affect the values d and i outside
the loop at all, and their values remain the same before and after the loop.
So, a parfor-loop requires that each iteration be independent of the other
iterations, and that all code that follows the parfor-loop not depend on the
loop iteration sequence.

3-5

3 Parallel for-Loops (parfor)

Reduction Assignments
The next two examples show parfor-loops using reduction assignments. A
reduction is an accumulation across iterations of a loop. The example on the
left uses x to accumulate a sum across 10 iterations of the loop. The example
on the right generates a concatenated array, 1:10. In both of these examples,
the execution order of the iterations on the workers does not matter: while
the workers calculate individual results, the client properly accumulates or
assembles the final loop result.

x = 0;
parfor (i = 1:10)

x = x + i;
end
x

x2 = [];
n = 10;
parfor (i = 1:n)

x2 = [x2, i];
end
x2

If the loop iterations operate in random sequence, you might expect the
concatenation sequence in the example on the right to be nonconsecutive.
However, MATLAB recognizes the concatenation operation and yields
deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not
a valid parfor-loop because the value of an element of f in one iteration
depends on the values of other elements of f calculated in other iterations.

f = zeros(1,50);
f(1) = 1;
f(2) = 2;
parfor (n = 3:50)

f(n) = f(n-1) + f(n-2);
end

When you are finished with your loop examples, clear your workspace and
close or release your pool of workers:

clear
matlabpool close

The following sections provide further information regarding programming
considerations and limitations for parfor-loops.

3-6

Programming Considerations

Programming Considerations

In this section...

“MATLAB Path” on page 3-7

“Error Handling” on page 3-7

“Limitations” on page 3-8

“Performance Considerations” on page 3-10

“Compatibility with Earlier Versions of MATLAB” on page 3-11

MATLAB Path
All workers executing a parfor-loop must have the same MATLAB path
configuration as the client, so that they can execute any functions called in the
body of the loop. Therefore, whenever you use cd, addpath, or rmpath on the
client, it also executes on all the workers, if possible. For more information,
see the matlabpool reference page. When the workers are running on a
different platform than the client, use the function dctRunOnAll to properly
set the MATLAB path on all workers.

Error Handling
When an error occurs during the execution of a parfor-loop, all iterations
that are in progress are terminated, new ones are not initiated, and the loop
terminates.

Errors and warnings produced on workers are annotated with the worker ID
and displayed in the client’s Command Window in the order in which they
are received by the client MATLAB.

The behavior of lastwarn and lasterror are unspecified at the end of the
parfor if they are used within the loop body.

3-7

3 Parallel for-Loops (parfor)

Limitations

Unambiguous Variable Names
You cannot have names in a parfor-loop that are ambiguous as to whether
they refer to a variable or function at the time the code is read. (See “Naming
Variables” in the MATLAB documentation.) For example, in the following
code, if f is not a function on the path when the code is read, nor clearly
defined as a variable in the code, f(5) could refer either to the fifth element of
the array f, or to the function f with an argument of 5.

parfor (i=1:n)
...
a = f(5);
...

end

Transparency
The body of a parfor-loop must be transparent, meaning that all references to
variables must be “visible” (i.e., they occur in the text of the program).

In the following example, because X is not visible as an input variable in the
parfor body (only the string 'X' is passed to eval), it does not get transferred
to the workers. As a result, MATLAB issues an error at run time:

X = 5;
parfor (i = 1:4)

eval('X');
end

Other functions that violate transparency are evalc, evalin, and assignin
with the workspace argument specified as 'caller'; save and load, unless
the output of load is assigned.

MATLAB does successfully execute eval and evalc statements that appear in
functions called from the parfor body.

3-8

Programming Considerations

Nondistributable Functions
If you use a function that is not strictly computational in nature (e.g., input,
plot, keyboard) in a parfor-loop or in any function called by a parfor-loop,
the behavior of that function occurs on the worker. The results might include
hanging the worker process or having no visible effect at all.

Nested Functions
The body of a parfor-loop cannot make reference to a nested function.
However, it can call a nested function by means of a function handle.

Nested parfor-Loops
The body of a parfor-loop cannot contain another parfor-loop. However, it
can call a function that contains another parfor-loop.

Break and Return Statements
The body of a parfor-loop cannot contain break or return statements.

Global and Persistent Variables
The body of a parfor-loop cannot contain global nor persistent variable
declarations.

3-9

3 Parallel for-Loops (parfor)

Performance Considerations

Slicing Arrays
If a variable is initialized before a parfor-loop, then used inside the
parfor-loop, it has to be passed to each MATLAB worker evaluating the loop
iterations. Only those variables used inside the loop are passed from the
client workspace. However, if all occurrences of the variable are indexed by
the loop variable, each worker receives only the part of the array it needs. For
more information, see “Where to Create Arrays” on page 3-26.

Local vs. Cluster Workers
Running your code on local workers might offer the convenience of testing
your application without requiring the use of cluster resources. However,
there are certain drawbacks or limitations with using local workers. Because
the transfer of data does not occur over the network, transfer behavior on local
workers might not be indicative of how it will typically occur over a network.
For more details, see “Optimizing on Local vs. Cluster Workers” on page 3-26.

3-10

Programming Considerations

Compatibility with Earlier Versions of MATLAB
In versions of MATLAB prior to 7.5, the name parfor designated a more
limited style of parallel for than what is available in MATLAB 7.5 and later.
This style was intended for use with distributed arrays inside a parallel job.
In version 7.5, MATLAB supports both the pre-7.5 style and the parfor
described in this chapter. Because of this change, the parfor keyword has
a different meaning in MATLAB 7.5 than it did in pre-7.5 versions, and you
should be careful to use it appropriately.

To help avoid the possibility of your accidentally using the parfor keyword to
define the earlier style of a parfor-loop, there is an additional difference in
syntax between the two commands. The range of a parfor expression must
be enclosed within parentheses. If you do happen to use parfor without the
parentheses, MATLAB issues a warning message. To avoid this warning,
convert the pre-7.5 style parfor to an ordinary for-loop that uses drange to
define the range.

Functionality Syntax Prior to
MATLAB 7.5

Syntax in MATLAB 7.5
and Later

Parallel loop for
distributed arrays
inside a parallel job

parfor i = range
loop body

.

.
end

for i = drange(range)
loop body

.

.
end

Parallel loop
for implicit
distribution of
work

Not Implemented
parfor (i = range)

loop body
.
.

end

Note The M-Lint utility catches improper use of the parfor keyword in
the MATLAB Editor, highlighting the invalid syntax. If you right-click
the highlighted text, you have the option to replace it with the currently
supported syntax.

3-11

3 Parallel for-Loops (parfor)

Advanced Topics

In this section...

“About Programming Notes” on page 3-12

“Classification of Variables” on page 3-12

“Improving Performance” on page 3-26

About Programming Notes
This section presents guidelines and restrictions in shaded boxes like the one
shown below. Those labeled as Required result in an error if your parfor
code does not adhere to them. MATLAB catches some of these errors at
the time it reads the code and others when it executes the code. These are
referred to here as static and dynamic errors, respectively, and are labeled as
Required (static) or Required (dynamic). Guidelines that do not cause
errors are labeled as Recommended. You can use M-Lint to help make your
parfor-loops comply with these guidelines.

Required (static): Description of the guideline or restriction

Classification of Variables

• “Overview” on page 3-12

• “Loop Variable” on page 3-13

• “Sliced Variables” on page 3-14

• “Broadcast Variables” on page 3-17

• “Reduction Variables” on page 3-17

• “Temporary Variables” on page 3-24

Overview
When a name in a parfor-loop is recognized as referring to a variable, it is
classified into one of the following categories. A parfor-loop generates an

3-12

Advanced Topics

error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

��������	�
��

��	
�������������	�
��
����
�������	�
��

�������������	�
��

����
�	������	�
�� ��	
���	��������	�
��

Loop Variable
The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.

3-13

3 Parallel for-Loops (parfor)

Required (static): Assignments to the loop variable are not allowed.

This example attempts to modify the value of the loop variable i in the body
of the loop, and thus is invalid:

parfor (i = 1:n)
i = i + 1;
a(i) = i;

end

Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices,
which are then operated on separately by workers and by the MATLAB client.
Each iteration of the loop works on a different slice of the array. Using sliced
variables is important because this type of variable can reduce communication
between the client and workers. Only those slices needed by a worker are sent
to it, and only when it starts working on a particular range of indices.

In the next example, a slice of A consists of a single element of that array:

parfor (i = 1:length(A))
B(i) = f(A(i));

end

Characteristics of a Sliced Variable. A variable in a parfor-loop is sliced
if it has all of the following characteristics. A description of each characteristic
follows the list:

• Type of First-Level Indexing — The first level of indexing is either
parentheses, (), or braces, {}.

• Fixed Index Listing — Within the first-level parenthesis or braces, the list
of indices is the same for all occurrences of a given variable.

• Form of Indexing — Within the list of indices for the variable, exactly one
index involves the loop variable.

• Shape of Array — In assigning to a sliced variable, the right-hand side
of the assignment is not [] or '' (these operators indicate deletion of
elements).

3-14

Advanced Topics

Type of First-Level Indexing. For a sliced variable, the first level of indexing is
enclosed in either parentheses, (), or braces, {}.

This table lists the forms for the first level of indexing for arrays sliced and
not sliced.

Reference for Variable Not
Sliced

Reference for Sliced Variable

A.x A(...)

A.(...) A{...}

After the first level, you can use any type of valid MATLAB indexing in the
second and further levels.

The variable A shown here on the left is not sliced; that shown on the right
is sliced:

A.q{i,12} A{i,12}.q

Fixed Index Listing. Within the first-level parentheses or braces of a sliced
variable’s indexing, the list of indices is the same for all occurrences of a given
variable.

The variable A shown here on the left is not sliced because A is indexed by i
and i+1 in different places; that shown on the right is sliced:

parfor (i = 1:k)
B(:) = h(A(i), A(i+1));

end

parfor (i = 1:k)
B(:) = f(A(i));
C(:) = g(A{i});

end

The example above on the right shows some occurrences of a sliced variable
with first-level parenthesis indexing and with first-level brace indexing in the
same loop. This is acceptable.

Form of Indexing. Within the list of indices for a sliced variable, one of these
indices is of the form i, i+k, i-k, k+i, or k-i, where i is the loop variable and

3-15

3 Parallel for-Loops (parfor)

k is a constant or a simple (nonindexed) variable; and every other index is a
constant, a simple variable, colon, or end.

With i as the loop variable, the A variables shown here on the left are not
sliced; those on the right are sliced:

A(i+f(k),j,:,3)
A(i,20:30,end)
A(i,:,s.field1)

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

When you use other variables along with the loop variable to index an array,
you cannot set these variables inside the loop. In effect, such variables are
constant over the execution of the entire parfor statement. You cannot
combine the loop variable with itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The
variable A shown here on either line is not sliced:

A(i,:) = [];
A(end + 1) = i;

The reason A is not sliced in either case is because changing the shape of a
sliced array would violate assumptions governing communication between
the client and workers.

Sliced Input and Output Variables. All sliced variables have the
characteristics of being input or output. A sliced variable can sometimes have
both characteristics. MATLAB transmits sliced input variables from the client
to the workers, and sliced output variables from workers back to the client. If
a variable is both input and output, it is transmitted in both directions.

3-16

Advanced Topics

In this parfor-loop, r is a sliced input variable and b is a sliced output
variable:

a = 0;
z = 0;
r = rand(1,10);
parfor (i = 1:10)

a = i;
z = z + i;
b(i) = r(i);

end

However, if it is clear that in every iteration, every reference to an array
element is set before it is used, the variable is not a sliced input variable. In
this example, all the elements of A are set, and then only those fixed values
are used:

parfor (i = 1:n)
if someCondition

A(i) = 32;
else

A(i) = 17;
end
loop code that uses A(i)

end

Broadcast Variables
A broadcast variable is any variable other than the loop variable or a sliced
variable that is not affected by an assignment inside the loop. At the start of
a parfor-loop, the values of any broadcast variables are sent to all workers.
Although this type of variable can be useful or even essential, broadcast
variables that are large can cause a lot of communication between client and
workers. In some cases it might be more efficient to use temporary variables
for this purpose, creating and assigning them inside the loop.

Reduction Variables
MATLAB supports an important exception, called reductions, to the rule that
loop iterations must be independent. A reduction variable accumulates a

3-17

3 Parallel for-Loops (parfor)

value that depends on all the iterations together, but is independent of the
iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both side of an assignment statement, such as
any of the following, where expr is a MATLAB expression.

X = X + expr X = expr + X

X = X - expr See Associativity in Reduction
Assignments in “Further
Considerations with Reduction
Variables” on page 3-20

X = X .* expr X = expr .* X

X = X * expr X = expr * X

X = X & expr X = expr & X

X = X | expr X = expr | X

X = [X, expr] X = [expr, X]

X = [X; expr] X = [expr; X]

X = {X, expr} X = {expr, X}

X = {X; expr} X = {expr; X}

X = min(X, expr) X = min(expr, X)

X = max(X, expr) X = max(expr, X)

X = union(X, expr) X = union(expr, X)

X = intersect(X, expr) X = intersect(expr, X)

Each of the allowed statements listed in this table is referred to as a reduction
assignment, and, by definition, a reduction variable can appear only in
assignments of this type.

The following example shows a typical usage of a reduction variable X:

3-18

Advanced Topics

X = ...; % Do some initialization of X
parfor (i = 1:n)

X = X + d(i);
end

This loop is equivalent to the following, where each d(i) is calculated by
a different iteration:

X = X + d(1) + ... + d(n)

If the loop were a regular for-loop, the variable X in each iteration would get
its value either before entering the loop or from the previous iteration of the
loop. However, this concept does not apply to parfor-loops:

In a parfor-loop, the value of X is never transmitted from client to workers or
from worker to worker. Rather, additions of d(i) are done in each worker, with
i ranging over the subset of 1:n being performed on that worker. The results
are then transmitted back to the client, which adds the workers’ partial sums
into X. Thus, workers do some of the additions, and the client does the rest.

Basic Rules for Reduction Variables. The following requirements further
define the reduction assignments associated with a given variable.

Required (static): For any reduction variable, the same reduction function
or operation must be used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses
+ in one instance, and [,] in another. The parfor-loop on the right is valid:

parfor (i = 1:n)
if A > 5*k

A = A + i;
else

A = [A, 4+i];
end
loop body continued

end

parfor (i = 1:n)
if A > 5*k

A = A + i;
else

A = A + i + 5*k;
end
loop body continued

end

3-19

3 Parallel for-Loops (parfor)

Required (static): If the reduction assignment uses * or [,], then in
every reduction assignment for X, X must be consistently specified as the
first argument or consistently specified as the second.

The parfor-loop on the left below is not valid because the order of items in
the concatenation is not consistent throughout the loop. The parfor-loop
on the right is valid:

parfor (i = 1:n)
if A > 5*k

A = [A, 4+i];
else

A = [r(i), A];
loop body continued

end

parfor (i = 1:n)
if A > 5*k

A = [A, 4+i];
else

A = [A, r(i)];
loop body continued

end

Further Considerations with Reduction Variables. This section provide
more detail about reduction assignments, associativity, commutativity, and
overloading of reduction functions.

Reduction Assignments. In addition to the specific forms of reduction
assignment listed in the table in “Reduction Variables” on page 3-17, the only
other (and more general) form of a reduction assignment is

X = f(X, expr) X = f(expr, X)

Required (static): f can be a function or a variable. If it is a variable, it
must not be affected by the parfor body (in other words, it is a broadcast
variable).

If f is a variable, then for all practical purposes its value at run time is
a function handle. However, this is not strictly required; as long as the
right-hand side can be evaluated, the resulting value is stored in X.

The parfor-loop below on the left will not execute correctly because the
statement f = @times causes f to be classified as a temporary variable and

3-20

Advanced Topics

therefore is cleared at the beginning of each iteration. The parfor on the
right is correct, because it does not assign to f inside the loop:

f = @(x,k)x * k;
parfor (i = 1,n)

a = f(a,i);
loop body continued
f = @times; % Affects f

end

f = @(x,k)x * k;
parfor (i = 1,n)

a = f(a,i);
loop body continued

end

Note that the operators && and || are not listed in the table in “Reduction
Variables” on page 3-17. Except for && and ||, all the matrix operations of
MATLAB have a corresponding function f, such that u op v is equivalent to
f(u,v). For && and ||, such a function cannot be written because u&&v and
u||v might or might not evaluate v, but f(u,v) always evaluates v before
calling f. This is why && and || are excluded from the table of allowed
reduction assignments for a parfor-loop.

Every reduction assignment has an associated function f. The properties of
f that ensure deterministic behavior of a parfor statement are discussed in
the following sections.

Associativity in Reduction Assignments. Concerning the function f as used in
the definition of a reduction variable, the following practice is recommended,
but does not generate an error if not adhered to. Therefore, it is up to you to
ensure that your code meets this recommendation.

Recommended: To get deterministic behavior of parfor-loops, the
reduction function f must be associative.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

The classification rules for variables, including reduction variables, are purely
syntactic. They cannot determine whether the f you have supplied is truly
associative or not. If it is not, different executions of the loop might result in
different answers. In other words, although parfor gives you the ability to

3-21

3 Parallel for-Loops (parfor)

declare that a function is associative, MATLAB does not detect misuse of
that ability.

Note While the addition of mathematical real numbers is associative,
addition of floating-point numbers is only approximately associative, and
different executions of this parfor statement might produce values of X with
different round-off errors. This is an unavoidable cost of parallelism.

For example, the statement on the left yields 1, while the statement on the
right returns 1 + eps:

(1 + eps/2) + eps/2 1 + (eps/2 + eps/2)

All the special cases listed in the table in “Reduction Variables” on page 3-17
have a corresponding function that is (perhaps approximately) associated
with it, with the exception of the minus operator (-). The assignment
X = X - expr can conceptually be written as X = X + (-expr), and
MATLAB achieves this effect for you. (Technically, the function associated
with this reduction assignment is plus, not minus.) However, the assignment
X = expr - X cannot be written using an associative function, which explains
its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions,
including +, .*, min, and max, intersect, and union, are also commutative.
That is, they satisfy the following for all a and b:

f(a,b) = f(b,a)

Examples of noncommutative functions are * (because matrix multiplication is
not commutative for matrices in which both dimensions have size greater than
one), [,], [;], {,}, and {;}. Noncommutativity is the reason that consistency
in the order of arguments to these functions is required. As a practical matter,
a more efficient algorithm is possible when a function is commutative as well
as associative, and parfor is optimized to exploit commutativity.

3-22

Advanced Topics

Recommended: Except in the cases of *, [,], [;], {,}, and {;}, the
function f of a reduction assignment should be commutative. If f is not
commutative, different executions of the loop might result in different
answers.

Unless f is a known noncommutative built-in, it is assumed to be
commutative. There is currently no way to specify a user-defined,
noncommutative function in parfor.

Overloading in Reduction Assignments. Most associative functions f have an
identity element e, so that for any a, the following holds true:

f(e,a) = a = f(a,e)

Examples of identity elements for some functions are listed in this table.

Function Identity Element

+ 0

* and .* 1

min Inf

max -Inf

[,], [;], and union []

MATLAB uses the identity elements of reduction functions when it knows
them. So, in addition to associativity and commutativity, you should also keep
identity elements in mind when overloading these functions.

Recommended: An overload of +, *, .*, min, max, union, [,], or [;]
should be associative if it is used in a reduction assignment in a parfor.
The overload must treat the respective identity element given above (all
with class double) as an identity element.

Recommended: An overload of +, .*, min, max, union, or intersect
should be commutative.

3-23

3 Parallel for-Loops (parfor)

There is no way to specify the identity element for a function. In these cases,
the behavior of parfor is a little less efficient than it is for functions with a
known identity element, but the results are correct.

Similarly, because of the special treatment of X = X - expr, the following
is recommended.

Recommended: An overload of the minus operator (-) should obey the
mathematical law that X - (y + z) is equivalent to (X - y) - z.

Temporary Variables
A temporary variable is any variable that is the target of a direct, nonindexed
assignment, but is not a reduction variable. In the following parfor-loop, a
and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor (i = 1:10)

a = i; % Variable a is temporary
z = z + i;
if i <= 5

d = 2*a; % Variable d is temporary
end

end

In contrast to the behavior of a for-loop, MATLAB effectively clears any
temporary variables before each iteration of a parfor-loop. To help ensure
the independence of iterations, the values of temporary variables cannot
be passed from one iteration of the loop to another. Therefore, temporary
variables must be set inside the body of a parfor-loop, so that their values are
defined separately for each iteration.

MATLAB does not send temporary variables back to the client. A temporary
variable in the context of the parfor statement has no effect on a variable
with the same name that exists outside the loop, again in contrast to ordinary
for-loops.

3-24

Advanced Topics

Uninitialized Temporaries. Because temporary variables are cleared at
the beginning of every iteration, MATLAB can detect certain cases in which
any iteration through the loop uses the temporary variable before it is set
in that iteration. In this case, MATLAB issues a static error rather than a
run-time error, because there is little point in allowing execution to proceed
if a run-time error is guaranteed to occur. This kind of error often arises
because of confusion between for and parfor, especially regarding the rules
of classification of variables. For example, suppose you write

b = true;
parfor (i = 1:n)

if b && some_condition(i)
do_something(i);
b = false;

end
...

end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a
temporary variable because it occurs directly as the target of an assignment
inside the loop. Therefore it is cleared at the start of each iteration, so its use
in the condition of the if is guaranteed to be uninitialized. (If you change
parfor to for, the value of b assumes sequential execution of the loop, so that
do_something(i) is executed for only the lower values of i until b is set
false.)

Temporary Variables Intended as Reduction Variables. Another
common cause of uninitialized temporaries can arise when you have a
variable that you intended to be a reduction variable, but you use it elsewhere
in the loop, causing it technically to be classified as a temporary variable.
For example:

s = 0;
parfor (i = 1:n)

s = s + f(i);
...
if (s > whatever)

...
end

end

3-25

3 Parallel for-Loops (parfor)

If the only occurrences of s were the two in the first statement of the body,
it would be classified as a reduction variable. But in this example, s is not a
reduction variable because it has a use outside of reduction assignments in
the line s > whatever. Because s is the target of an assignment (in the first
statement), it is a temporary, so MATLAB issues an error about this fact, but
points out the possible connection with reduction.

Note that if you change parfor to for, the use of s outside the reduction
assignment relies on the iterations being performed in a particular order. The
point here is that in a parfor-loop, it matters that the loop “does not care”
about the value of a reduction variable as it goes along. It is only after the
loop that the reduction value becomes usable.

Improving Performance

Where to Create Arrays
With a parfor-loop, it might be faster to have each MATLAB worker create
its own arrays or portions of them in parallel, rather than to create a large
array in the client before the loop and send it out to all the workers separately.
Having each worker create its own copy of these arrays inside the loop saves
the time of transferring the data from client to workers, because all the
workers can be creating it at the same time. This might challenge your usual
practice to do as much variable initialization before a for-loop as possible, so
that you do not needlessly repeat it inside the loop.

Whether to create arrays before the parfor-loop or inside the parfor-loop
depends on the size of the arrays, the time needed to create them, whether
the workers need all or part of the arrays, the number of loop iterations
that each worker performs, and other factors. While many for-loops can be
directly converted to parfor-loops, even in these cases there might be other
issues involved in optimizing your code.

Optimizing on Local vs. Cluster Workers
With local workers, because all the MATLAB worker sessions are running on
the same machine, you might not see any performance improvement from a
parfor-loop regarding execution time. This can depend on many factors,
including how many processors and cores your machine has. You might
experiment to see if it is faster to create the arrays before the loop (as shown

3-26

Advanced Topics

on the left below), rather than have each worker create its own arrays inside
the loop (as shown on the right).

Try the following examples running a matlabpool locally, and notice the
difference in time execution for each loop. First open a local matlabpool:

matlabpool

Then enter the following examples. (If you are viewing this documentation in
the MATLAB help browser, highlight each segment of code below, right-click,
and select Evaluate Selection in the context menu to execute the block in
MATLAB. That way the time measurement will not include the time required
to paste or type.)

tic;

n = 200;

M = magic(n);

R = rand(n);

parfor (i = 1:n)

A(i) = sum(M(i,:).*R(n+1-i,:));

end

toc

tic;

n = 200;

parfor (i = 1:n)

M = magic(n);

R = rand(n);

A(i) = sum(M(i,:).*R(n+1-i,:));

end

toc

Running on a remote cluster, you might find different behavior as workers
can simultaneously create their arrays, saving transfer time. Therefore, code
that is optimized for local workers might not be optimized for cluster workers,
and vice versa.

3-27

3 Parallel for-Loops (parfor)

3-28

4

Interactive Parallel Mode
(pmode)

This chapter describes the interactive parallel mode (pmode) of MATLAB in
the following sections.

Introduction (p. 4-2) Introduces the concept of parallel
computing with MATLAB

Getting Started with Interactive
Parallel Mode (p. 4-3)

Provides a quick tutorial to begin
using the interactive parallel mode
of MATLAB

Parallel Command Window (p. 4-11) Describes the pmode interface

Running pmode on a Cluster (p. 4-17) Describes how to run pmode as a
parallel job on a cluster using a
configuration

Plotting in pmode (p. 4-18) Describes how to plot when working
in pmode

Limitations and Unexpected Results
(p. 4-20)

Provides information on common
problems with pmode

Troubleshooting (p. 4-22) Suggestions for solving problems you
might encounter in pmode

4 Interactive Parallel Mode (pmode)

Introduction
The interactive parallel mode (pmode) of MATLAB lets you work interactively
with a parallel job running simultaneously on several labs. Commands you
type at the pmode prompt in the Parallel Command Window are executed
on all labs at the same time. Each lab executes the commands in its own
workspace on its own variables.

The way the labs remain synchronized is that each lab becomes idle when it
completes a command or statement, waiting until all the labs working on this
job have completed the same statement. Only when all the labs are idle, do
they then proceed together to the next pmode command.

4-2

Getting Started with Interactive Parallel Mode

Getting Started with Interactive Parallel Mode
This example uses a local scheduler and runs the labs on your local MATLAB
client machine. It does not require an external cluster or scheduler. The steps
include the pmode prompt (P>>) for commands that you type in the Parallel
Command Window.

1 Start the parallel mode (pmode) with the pmode command.

pmode start local 4

This starts four local labs, creates a parallel job to run on those labs, and
opens the Parallel Command Window.

You can control where the command history appears. For this exercise, the
position is set by clicking Window > History Position > Above Prompt ,
but you can set it according to your own preference.

4-3

4 Interactive Parallel Mode (pmode)

2 To illustrate that commands at the pmode prompt are executed on all labs,
ask for help on a function.

P>> help magic

3 Set a variable at the pmode prompt. Notice that the value is set on all
the labs.

P>> x = pi

4 A variable does not necessarily have the same value on every lab. The
labindex function returns the ID particular to each lab working on this
parallel job. In this example, the variable x exists with a different value in
the workspace of each lab.

P>> x = labindex

5 Return the total number of labs working on the current parallel job with
the numlabs function.

4-4

Getting Started with Interactive Parallel Mode

P>> all = numlabs

6 Create a replicated array on all the labs.

P>> segment = [1 2; 3 4; 5 6]

4-5

4 Interactive Parallel Mode (pmode)

7 Assign a unique value to the array on each lab, dependent on the lab
number. With a different value on each lab, this is a variant array.

P>> segment = segment + 10*labindex

4-6

Getting Started with Interactive Parallel Mode

8 Until this point in the example, the variant arrays are independent, other
than having the same name. Aggregate the array segments into a coherent
array, distributed among the labs, with the darray function.

P>> whole = darray(segment, 2)

This combines four separate 3-by-2 arrays into one 3-by-8 distributed array.
The second argument value of 2 indicates that the array is distributed
along its second dimension, or columns. On each lab, segment provided the
data for the local portion of the whole array, so segment and local(whole)
appear the same on each lab.

9 Now, when you operate on the distributed array whole, each lab handles
the calculations on only its portion, or segment, of the array, not the whole
array.

P>> whole = whole + 1000

4-7

4 Interactive Parallel Mode (pmode)

10 Although the distributed array allows for operations on its entirety, you
can use the local function to access the portion of a distributed array
on a particular lab.

P>> section = local(whole)

Thus, section is now a variant array because it is different on each lab.

11 If you need the entire array in one workspace, use the gather function.

P>> combined = gather(whole)

Notice, however, that this gathers the entire array into the workspaces of
all the labs. See the gather reference page for the syntax to gather the
array into the workspace of only one lab.

12 Because the labs ordinarily do not have displays, if you want to perform
any graphical tasks involving your data, such as plotting, you must do this
from the client workspace. Copy the array to the client workspace by typing
the following commands in the MATLAB (client) Command Window.

pmode lab2client combined 1

Notice that combined is now a 3-by-8 array in the client workspace.

whos combined

To see the array, type its name.

combined

4-8

Getting Started with Interactive Parallel Mode

13 Many matrix functions that might be familiar can operate on distributed
arrays. For example, the eye function creates an identity matrix. Now
you can create a distributed identity matrix with the following commands
in the Parallel Command Window.

P>> distobj = darray();
P>> I = eye(6, distobj)

Calling the darray function without arguments causes the default
distribution, which is by columns distributed as evenly as possible.

4-9

4 Interactive Parallel Mode (pmode)

14 If you require distribution along a different dimension, you can use the
redistribute function. In this example, the argument 1 indicates to
distribute along the first dimension (rows).

P>> I = redistribute(I, 1)

15 Exit pmode and return to normal MATLAB.

P>> pmode exit

4-10

Parallel Command Window

Parallel Command Window
When you start pmode on your local client machine with the command

pmode start local 4

four labs start on your local machine and a parallel job is created to run on
them. The first time you run pmode with this configuration, you get a tiled
display of the four labs.

��
��������
	���	���
�����������

�������
�	�����
�������
�	��

�����
�������
	����
�������

����������������
�	�����

4-11

4 Interactive Parallel Mode (pmode)

The Parallel Command Window offers much of the same functionality as the
MATLAB desktop, including command line, output, and command history.

When you select one or more lines in the command history and right-click,
you see the following context menu.

You have several options for how to arrange the tiles showing your lab
outputs. Usually, you will choose an arrangement that depends on the format
of your data. For example, the data displayed until this point in this section,
as in the previous figure, is distributed by columns. It might be convenient to
arrange the tiles side by side.

��	
���	�	���	
��

����
��������

4-12

Parallel Command Window

This arrangement results in the following figure, which might be more
convenient for viewing data distributed by columns.

4-13

4 Interactive Parallel Mode (pmode)

Alternatively, if the data is distributed by rows, you might want to stack the
lab tiles vertically. For the following figure, the data is reformatted with the
command

I = redistribute(I, 1)

When you rearrange the tiles, you see the following.

����
������	
��
�����������

��������������
�	����	���

4-14

Parallel Command Window

You can control the relative positions of the command window and the lab
output. The following figure shows how to set the output to display beside the
input, rather than above it.

You can choose to view the lab outputs by tabs.

����
����

��
�	�����

����
����

����
����
�
������	�
��	����

4-15

4 Interactive Parallel Mode (pmode)

You can have multiple labs send their output to the same tile or tab. This
allows you to have fewer tiles or tabs than labs.

��	
����

���������
����
�������������
�

In this case, the window provides shading to help distinguish the outputs
from the various labs.

����	������
�
	���������

4-16

Running pmode on a Cluster

Running pmode on a Cluster
When you run pmode on a cluster of labs, you are running a job that is much
like any other parallel job, except it is interactive. Many of the job’s properties
are determined by a configuration. For more details about creating and using
configurations, see “Programming with User Configurations” on page 2-6.

The general form of the command to start a pmode session is

pmode start <config-name> <num-labs>

where <config-name> is the name of the configuration you want to use,
and <num-labs> is the number of labs you want to run the pmode job
on. If <num-labs> is omitted, the number of labs is determined by the
configuration. Coordinate with your system administrator when creating or
using a configuration.

If you omit <config-name>, pmode uses the default configuration (see the
defaultParallelConfig reference page).

For details on all the command options, see the pmode reference page.

4-17

4 Interactive Parallel Mode (pmode)

Plotting in pmode
Because the labs running a job in pmode are MATLAB sessions without
displays, they cannot create plots or other graphic outputs on your desktop.

When working in pmode with distributed arrays, one way to plot a distributed
array is to follow these basic steps:

1 Use the gather function to collect the entire array into the workspace of
one lab.

2 Transfer the whole array from any lab to the MATLAB client with pmode
lab2client.

3 Plot the data from the client workspace.

The following example illustrates this technique.

Create a 1-by-100 distributed array of 0s. With four labs, each lab has a
1-by-25 segment of the whole array.

P>> D = zeros(1,100,darray())

1: local(D) is 1-by-25
2: local(D) is 1-by-25
3: local(D) is 1-by-25
4: local(D) is 1-by-25

Use a for-loop over the distributed range to populate the array so that it
contains a sine wave. Each lab does one-fourth of the array.

P>> for i = drange(1:100)
D(i) = sin(i*2*pi/100);
end;

Gather the array so that the whole array is contained in the workspace of
lab 1.

P>> P = gather(D, 1);

4-18

Plotting in pmode

Transfer the array from the workspace of lab 1 to the MATLAB client
workspace, then plot the array from the client. Note that both commands are
entered in the MATLAB (client) Command Window.

pmode lab2client P 1
plot(P)

This is not the only way to plot distributed data. One alternative method,
especially useful when running noninteractive parallel jobs, is to plot the data
to a file, then view it from a later MATLAB session.

4-19

4 Interactive Parallel Mode (pmode)

Limitations and Unexpected Results

In this section...

“Distributing Nonreplicated Arrays” on page 4-20

“Using Graphics in pmode” on page 4-21

Distributing Nonreplicated Arrays
The distribute function is intended for use only on “Replicated Arrays”
on page 8-2. When executing the distribute function, each lab creates a
local segment of the distributed array based on a portion of the array in its
workspace. The following simple example illustrates the result of using
distribute on “Variant Arrays” on page 8-3.

First, create a variant array, whose value depends on labindex.

P>> x = labindex + (0:1)
1: x =
1: 1 2
2: x =
2: 2 3

Notice that the content of x differs on the two labs. When you distribute this
1-by-2 array, each lab gets only one element. With the distribute function,
lab 1 takes for its local portion of the array the first element of the array in
its own workspace; while lab 2 takes the second element of the array in its
own workspace.

P>> distribute(x)
1: local(ans) =
1: 1
2: local(ans) =
2: 3

The result is the distributed array [1 3]. This is neither of the original arrays.

4-20

Limitations and Unexpected Results

Using Graphics in pmode

Displaying a GUI
The labs that run the tasks of a parallel job are MATLAB sessions without
displays. As a result, these labs cannot display graphical tools and so you
cannot do things like plotting from within pmode. The general approach to
accomplish something graphical is to transfer the data into the workspace
of the MATLAB client using

pmode lab2client var lab

Then use the graphical tool on the MATLAB client.

Using Simulink
Because the labs running a pmode job do not have displays, you cannot use
Simulink to edit diagrams or to perform interactive simulation from within
pmode. If you type simulink at the pmode prompt, the Simulink Library
Browser opens in the background on the labs and is not visible.

You can use the sim command to perform noninteractive simulations in
parallel. If you edit your model in the MATLAB client outside of pmode, you
must save the model before accessing it in the labs via pmode; also, if the
labs had accessed the model previously, they must close and open the model
again to see the latest saved changes.

4-21

4 Interactive Parallel Mode (pmode)

Troubleshooting

In this section...

“Hostname Resolution” on page 4-22

“Socket Connections” on page 4-22

Hostname Resolution
If a lab cannot resolve the hostname of the computer running the MATLAB
client, use dctconfig to change the hostname by which the client machine
advertises itself.

Socket Connections
If a lab cannot open a socket connection to the MATLAB client, try the
following:

• Use dctconfig to change the hostname by which the client machine
advertises itself.

• Make sure that firewalls are not preventing communication between the
lab and client machines.

• Use dctconfig to change the client’s pmodeport property. This determines
the port that the labs will use to contact the client in the next pmode
session.

4-22

5

Evaluating Functions in a
Cluster

In many cases, the tasks of a job are all the same, or there are a limited
number of different kinds of tasks in a job. Distributed Computing Toolbox
offers a solution for these cases that alleviates you from having to define
individual tasks and jobs when evaluating a function in a cluster of workers.
The two ways of evaluating a function on a cluster are described in the
following sections:

Evaluating Functions Synchronously
(p. 5-2)

Evaluating a function in the cluster
while the MATLAB client is blocked

Evaluating Functions
Asynchronously (p. 5-8)

Evaluating a function in the cluster
in the background, while the
MATLAB client continues

5 Evaluating Functions in a Cluster

Evaluating Functions Synchronously

In this section...

“Scope of dfeval” on page 5-2

“Arguments of dfeval” on page 5-3

“Example — Using dfeval” on page 5-4

Scope of dfeval
When you evaluate a function in a cluster of computers with dfeval, you
provide basic required information, such as the function to be evaluated, the
number of tasks to divide the job into, and the variable into which the results
are returned. Synchronous (sync) evaluation in a cluster means that MATLAB
is blocked until the evaluation is complete and the results are assigned to
the designated variable. So you provide the necessary information, while
Distributed Computing Toolbox handles all the job-related aspects of the
function evaluation.

When executing the dfeval function, the toolbox performs all these steps
of running a job:

1 Finds a job manager or scheduler

2 Creates a job

3 Creates tasks in that job

4 Submits the job to the queue in the job manager or scheduler

5 Retrieves the results from the job

By allowing the system to perform all the steps for creating and running jobs
with a single function call, you do not have access to the full flexibility offered
by Distributed Computing Toolbox. However, this narrow functionality meets
the requirements of many straightforward applications. To focus the scope of
dfeval, the following limitations apply:

5-2

Evaluating Functions Synchronously

• You can pass property values to the job object; but you cannot set any
task-specific properties, including callback functions, unless you use
configurations.

• All the tasks in the job must have the same number of input arguments.

• All the tasks in the job must have the same number of output arguments.

• If you are using a third-party scheduler instead of the job manager, you
must use configurations in your call to dfeval. See “Programming with
User Configurations” on page 2-6, and the reference page for dfeval.

• You do not have direct access to the job manager, job, or task objects, i.e.,
there are no objects in your MATLAB workspace to manipulate (though
you can get them using findResource and the properties of the scheduler
object). Note that dfevalasync returns a job object.

• Without access to the objects and their properties, you do not have control
over the handling of errors.

Arguments of dfeval
Suppose the function myfun accepts three input arguments, and generates two
output arguments. To run a job with four tasks that call myfun, you could type

[X, Y] = dfeval(@myfun, {a1 a2 a3 a4}, {b1 b2 b3 b4}, {c1 c2 c3 c4});

The number of elements of the input argument cell arrays determines the
number of tasks in the job. All input cell arrays must have the same number
of elements. In this example, there are four tasks.

Because myfun returns two arguments, the results of your job will be assigned
to two cell arrays, X and Y. These cell arrays will have four elements each, for
the four tasks. The first element of X will have the first output argument from
the first task, the first element of Y will have the second argument from the
first task, and so on.

The following table shows how the job is divided into tasks and where the
results are returned.

5-3

5 Evaluating Functions in a Cluster

Task Function Call Results

myfun(a1, b1, c1) X{1}, Y{1}

myfun(a2, b2, c2) X{2}, Y{2}

myfun(a3, b3, c3) X{3}, Y{3}

myfun(a4, b4, c4) X{4}, Y{4}

So using one dfeval line would be equivalent to the following code, except
that dfeval can run all the statements simultaneously on separate machines.

[X{1}, Y{1}] = myfun(a1, b1, c1);
[X{2}, Y{2}] = myfun(a2, b2, c2);
[X{3}, Y{3}] = myfun(a3, b3, c3);
[X{4}, Y{4}] = myfun(a4, b4, c4);

For further details and examples of the dfeval function, see the dfeval
reference page.

Example — Using dfeval
Suppose you have a function called averages, which returns both the mean
and median of three input values. The function might look like this.

function [mean_, median_] = averages (in1, in2, in3)
% AVERAGES Return mean and median of three input values
mean_ = mean([in1, in2, in3]);
median_ = median([in1, in2, in3]);

You can use dfeval to run this function on four sets of data using four tasks
in a single job. The input data can be represented by the four vectors,

[1 2 6]
[10 20 60]
[100 200 600]
[1000 2000 6000]

5-4

Evaluating Functions Synchronously

A quick look at the first set of data tells you that its mean is 3, while its
median is 2. So,

[x,y] = averages(1,2,6)
x =

3
y =

2

When calling dfeval, its input requires that the data be grouped together
such that the first input argument to each task function is in the first cell
array argument to dfeval, all second input arguments to the task functions
are grouped in the next cell array, and so on. Because we want to evaluate
four sets of data with four tasks, each of the three cell arrays will have four
elements. In this example, the first arguments for the task functions are 1,
10, 100, and 1000. The second inputs to the task functions are 2, 20, 200, and
2000. With the task inputs arranged thus, the call to dfeval looks like this.

[A, B] = dfeval(@averages, {1 10 100 1000}, ...
{2 20 200 2000}, {6 60 600 6000}, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'})

A =
[3]
[30]
[300]
[3000]

B =
[2]
[20]
[200]
[2000]

Notice that the first task evaluates the first element of the three cell arrays.
The results of the first task are returned as the first elements of each of the
two output values. In this case, the first task returns a mean of 3 and median
of 2. The second task returns a mean of 30 and median of 20.

5-5

5 Evaluating Functions in a Cluster

If the original function were written to accept one input vector, instead of
three input values, it might make the programming of dfeval simpler. For
example, suppose your task function were

function [mean_, median_] = avgs (V)
% AVGS Return mean and median of input vector
mean_ = mean(V);
median_ = median(V);

Now the function requires only one argument, so a call to dfeval requires
only one cell array. Furthermore, each element of that cell array can be a
vector containing all the values required for an individual task. The first
vector is sent as a single argument to the first task, the second vector to the
second task, and so on.

[A,B] = dfeval(@avgs, {[1 2 6] [10 20 60] ...
[100 200 600] [1000 2000 6000]}, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'avgs.m'})

A =
[3]
[30]
[300]
[3000]

B =
[2]
[20]
[200]
[2000]

If you cannot vectorize your function, you might have to manipulate your
data arrangement for using dfeval. Returning to our original data in this
example, suppose you want to start with data in three vectors.

v1 = [1 2 6];
v2 = [10 20 60];
v3 = [100 200 600];
v4 = [1000 2000 6000];

5-6

Evaluating Functions Synchronously

First put all your data in a single matrix.

dataset = [v1; v2; v3; v4]
dataset =

1 2 6
10 20 60

100 200 600
1000 2000 6000

Then make cell arrays containing the elements in each column.

c1 = num2cell(dataset(:,1));
c2 = num2cell(dataset(:,2));
c3 = num2cell(dataset(:,3));

Now you can use these cell arrays as your input arguments for dfeval.

[A, B] = dfeval(@averages, c1, c2, c3, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'})

A =
[3]
[30]
[300]
[3000]

B =
[2]
[20]
[200]
[2000]

5-7

5 Evaluating Functions in a Cluster

Evaluating Functions Asynchronously
The dfeval function operates synchronously, that is, it blocks the MATLAB
command line until its execution is complete. If you want to send a job to the
job manager and get access to the command line while the job is being run
asynchronously (async), you can use the dfevalasync function.

The dfevalasync function operates in the same way as dfeval, except that it
does not block the MATLAB command line, and it does not directly return
results.

To asynchronously run the example of the previous section, type

job1 = dfevalasync(@averages, 2, c1, c2, c3, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'});

Note that you have to specify the number of output arguments that each
task will return (2, in this example).

The MATLAB session does not wait for the job to execute, but returns the
prompt immediately. Instead of assigning results to cell array variables, the
function creates a job object in the MATLAB workspace that you can use to
access job status and results.

You can use the MATLAB session to perform other operations while the job is
being run on the cluster. When you want to get the job’s results, you should
make sure it is finished before retrieving the data.

waitForState(job1, 'finished')
results = getAllOutputArguments(job1)

results =
[3] [2]
[30] [20]
[300] [200]
[3000] [2000]

The structure of the output arguments is now slightly different than it was for
dfeval. The getAllOutputArguments function returns all output arguments
from all tasks in a single cell array, with one row per task. In this example,

5-8

Evaluating Functions Asynchronously

each row of the cell array results will have two elements. So, results{1,1}
contains the first output argument from the first task, results{1,2} contains
the second argument from the first task, and so on.

For further details and examples of the dfevalasync function, see the
dfevalasync reference page.

5-9

5 Evaluating Functions in a Cluster

5-10

6

Programming Distributed
Jobs

A distributed job is one whose tasks do not directly communicate with each
other. The tasks do not need to run simultaneously, and a worker might run
several tasks of the same job in succession. Typically, all tasks perform the
same or similar functions on different data sets in an embarrassingly parallel
configuration.

The following sections describe how to program distributed jobs:

Using a Local Scheduler (p. 6-2) Programming a distributed job using
a local scheduler and workers on the
client machine

Using a Job Manager (p. 6-7) Programming a distributed job using
the job manager as a scheduler

Using a Fully Supported Third-Party
Scheduler (p. 6-18)

Programming a distributed job using
a Windows CCS or Platform LSF
scheduler to distribute the tasks

Using the Generic Scheduler
Interface (p. 6-30)

Programming a distributed job using
a generic third-party scheduler to
distribute the tasks

6 Programming Distributed Jobs

Using a Local Scheduler

In this section...

“Creating and Running Jobs with a Local Scheduler” on page 6-2

“Local Scheduler Behavior” on page 6-6

Creating and Running Jobs with a Local Scheduler
For jobs that require more control than the functionality offered by dfeval,
you have to program all the steps for creating and running the job. Using the
local scheduler lets you create and test your jobs without using the resources
of your cluster. Distributing tasks to workers that are all running on your
client machine might not offer any performance enhancement, so this feature
is provided primarily for code development, testing, and debugging.

Note Workers running from a local scheduler on a Windows machine can
display Simulink graphics as well as the output from certain functions such
as uigetfile and uigetdir. (With other platforms or schedulers, workers
cannot display any graphical output.) This behavior is subject to removal in
a future release.

This section details the steps of a typical programming session with
Distributed Computing Toolbox using a local scheduler:

• “Create a Scheduler Object” on page 6-3

• “Create a Job” on page 6-3

• “Create Tasks” on page 6-5

• “Submit a Job to the Scheduler” on page 6-5

• “Retrieve the Job’s Results” on page 6-5

Note that the objects that the client session uses to interact with the scheduler
are only references to data that is actually contained in the scheduler’s data
location, not in the client session. After jobs and tasks are created, you can
close your client session and restart it, and your job is still stored in the data

6-2

Using a Local Scheduler

location. You can find existing jobs using the findJob function or the Jobs
property of the scheduler object.

Create a Scheduler Object
You use the findResource function to create an object in your local MATLAB
session representing the local scheduler.

sched = findResource('scheduler','type','local');

Create a Job
You create a job with the createJob function. This statement creates a job
in the scheduler’s data location, creates the job object job1 in the client
session, and if you omit the semicolon at the end of the command, displays
some information about the job.

job1 = createJob(sched)

Job ID 1 Information
====================

UserName : eng864
State : pending

SubmitTime :
StartTime :

Running Duration :

- Data Dependencies

FileDependencies : {}
PathDependencies : {}

- Associated Task(s)

Number Pending : 0
Number Running : 0
Number Finished : 0

TaskID of errors :

You can use the get function to see all the properties of this job object.

6-3

6 Programming Distributed Jobs

get(job1)
Name: 'Job1'

ID: 1
UserName: 'eng864'

Tag: ''
State: 'pending'

CreateTime: 'Mon Jan 08 15:40:18 EST 2007'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.localscheduler]

UserData: []
Configuration: ''

Note that the job’s State property is pending. This means the job has not yet
been submitted (queued) for running, so you can now add tasks to it.

The scheduler’s display now indicates the existence of your job, which is the
pending one.

sched

Local Scheduler Information
===========================

Type : local
ClusterOsType : pc
DataLocation : C:\WINNT\Profiles\eng864\App...

HasSharedFilesystem : true

- Assigned Jobs

Number Pending : 1
Number Queued : 0
Number Running : 0
Number Finished : 0

6-4

Using a Local Scheduler

- Local Specific Properties

ClusterMatlabRoot : D:\apps\matlab

Create Tasks
After you have created your job, you can create tasks for the job using the
createTask function. Tasks define the functions to be evaluated by the
workers during the running of the job. Often, the tasks of a job are all
identical. In this example, five tasks will each generate a 3-by-3 matrix
of random numbers.

createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =

distcomp.task: 5-by-1

Submit a Job to the Scheduler
To run your job and have its tasks evaluated, you submit the job to the
scheduler with the submit function.

submit(job1)

The local scheduler starts up to four workers and distributes the tasks of
job1 to its workers for evaluation.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. After waiting for the job to
complete, use the function getAllOutputArguments to retrieve the results
from all the tasks in the job.

waitForState(job1)
results = getAllOutputArguments(job1);

Display the results from each task.

6-5

6 Programming Distributed Jobs

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Local Scheduler Behavior
The local scheduler runs in the MATLAB client session, so you do not have to
start any separate scheduler process for the local scheduler. When you submit
a job for evaluation by the local scheduler, the scheduler starts a MATLAB
worker for each task in the job, but only up to four at one time. If your job
has more than four tasks, the scheduler waits for one of the current four
tasks to complete before starting another MATLAB worker to evaluate the
next task. The local scheduler has no interaction with any other scheduler,
nor with any other workers that might also be running on your client machine
under the mdce service. Multiple MATLAB sessions on your computer can
each start its own local scheduler with its own four workers, but these groups
do not interact with each other, so you cannot combine local groups of workers
to increase your local cluster size.

When you end your MATLAB client session, its local scheduler and any
workers that happen to be running at that time also stop immediately.

6-6

Using a Job Manager

Using a Job Manager

In this section...

“Creating and Running Jobs with a Job Manager” on page 6-7

“Sharing Code” on page 6-12

“Managing Objects in the Job Manager” on page 6-14

Creating and Running Jobs with a Job Manager
For jobs that are more complex or require more control than the functionality
offered by dfeval, you have to program all the steps for creating and running
of the job.

This section details the steps of a typical programming session with
Distributed Computing Toolbox using a MathWorks job manager:

• “Find a Job Manager” on page 6-7

• “Create a Job” on page 6-9

• “Create Tasks” on page 6-10

• “Submit a Job to the Job Queue” on page 6-11

• “Retrieve the Job’s Results” on page 6-11

Note that the objects that the client session uses to interact with the job
manager are only references to data that is actually contained in the job
manager process, not in the client session. After jobs and tasks are created,
you can close your client session and restart it, and your job is still stored in
the job manager. You can find existing jobs using the findJob function or the
Jobs property of the job manager object.

Find a Job Manager
You use the findResource function to identify available job managers and to
create an object representing a job manager in your local MATLAB session.

6-7

6 Programming Distributed Jobs

To find a specific job manager, use parameter-value pairs for matching. In
this example, MyJobManager is the name of the job manager, while MyJMhost
is the hostname of the machine running the job manager lookup service.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager','LookupURL','MyJMhost');

get(jm)
Name: 'MyJobManager'

Hostname: 'bonanza'
HostAddress: {'123.123.123.123'}

Type: 'jobmanager'
ClusterOsType: 'pc'

Jobs: [0x1 double]
State: 'running'

Configuration: ''
UserData: []

ClusterSize: 2
NumberOfBusyWorkers: 0

BusyWorkers: [0x1 double]
NumberOfIdleWorkers: 2

IdleWorkers: [2x1 distcomp.worker]

If your network supports multicast, you can omit property values to search
on, and findResource returns all available job managers.

all_managers = findResource('scheduler','type','jobmanager')

You can then examine the properties of each job manager to identify which
one you want to use.

for i = 1:length(all_managers)
get(all_managers(i))

end

When you have identified the job manager you want to use, you can isolate
it and create a single object.

jm = all_managers(3)

6-8

Using a Job Manager

Create a Job
You create a job with the createJob function. Although you execute this
command in the client session, the job is actually created on the job manager.

job1 = createJob(jm)

This statement creates a job on the job manager jm, and creates the job object
job1 in the client session. Use get to see the properties of this job object.

get(job1)
Name: 'job_3'

ID: 3
UserName: 'eng864'

Tag: ''
State: 'pending'

RestartWorker: 0
Timeout: Inf

MaximumNumberOfWorkers: 2.1475e+009
MinimumNumberOfWorkers: 1

CreateTime: 'Thu Oct 21 19:38:08 EDT 2004'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.jobmanager]

UserData: []
QueuedFcn: []

RunningFcn: []
FinishedFcn: []

Note that the job’s State property is pending. This means the job has not
been queued for running yet, so you can now add tasks to it.

The job manager’s Jobs property is now a 1-by-1 array of distcomp.job
objects, indicating the existence of your job.

get(jm)
Name: 'MyJobManager'

6-9

6 Programming Distributed Jobs

Hostname: 'bonanza'
HostAddress: {'123.123.123.123'}

Type: 'jobmanager'
ClusterOsType: 'pc'

Jobs: [1x1 distcomp.job]
State: 'running'

Configuration: ''
UserData: []

ClusterSize: 2
NumberOfBusyWorkers: 0

BusyWorkers: [0x1 double]
NumberOfIdleWorkers: 2

IdleWorkers: [2x1 distcomp.worker]

You can transfer files to the worker by using the FileDependencies property
of the job object. For details, see the FileDependencies reference page and
“Sharing Code” on page 6-12.

Create Tasks
After you have created your job, you can create tasks for the job using the
createTask function. Tasks define the functions to be evaluated by the
workers during the running of the job. Often, the tasks of a job are all
identical. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =

distcomp.task: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

6-10

Using a Job Manager

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the job
queue with the submit function.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for
evaluation.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use the function
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(job1);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

6-11

6 Programming Distributed Jobs

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Sharing Code
Because the tasks of a job are evaluated on different machines, each machine
must have access to all the files needed to evaluate its tasks. The basic
mechanisms for sharing code are explained in the following sections:

• “Directly Accessing Files” on page 6-12

• “Passing Data Between Sessions” on page 6-13

• “Passing M-Code for Startup and Finish” on page 6-14

Directly Accessing Files
If the workers all have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
right places. You can define the path

• By using the job’s PathDependencies property. This is the preferred
method for setting the path, because it is specific to the job.

• By putting the path command in any of the appropriate startup files for
the worker:

- matlabroot\toolbox\local\startup.m

- matlabroot\toolbox\distcomp\user\jobStartup.m

- matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on
the user name. You can set the user name with which the job manager and
worker services of MATLAB Distributed Computing Engine run by setting

6-12

Using a Job Manager

the MDCEUSER value in the mdce_def file before starting the services. For
Windows systems, there is also MDCEPASS for providing the account password
for the specified user. For an explanation of service default settings and the
mdce_def file, see “Defining the Script Defaults” in the MATLAB Distributed
Computing Engine System Administrator’s Guide.

Passing Data Between Sessions
A number of properties on task and job objects are designed for passing code
or data from client to job manager to worker, and back. This information
could include M-code necessary for task evaluation, or the input data for
processing or output data resulting from task evaluation. All these properties
are described in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because the data is passed to a worker only once per job, saving
time if that worker is evaluating more than one task for the job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

• PathDependencies — This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

The default maximum amount of data that can be sent in a single call
for setting properties is approximately 50 MB. This limit applies to the
OutputArguments property as well as to data passed into a job. If the limit is
exceeded, you get an error message. For information on how to increase this
limit, see “Object Data Size Limitations” on page 2-29.

6-13

6 Programming Distributed Jobs

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the
worker’s MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean up a worker session as it
begins or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass
them to the job as part of the FileDependencies property, or include the path
names to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any of
these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

Managing Objects in the Job Manager
Because all the data of jobs and tasks resides in the job manager, these
objects continue to exist even if the client session that created them has

6-14

Using a Job Manager

ended. The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends” on page 6-15

• “Recovering Objects” on page 6-15

• “Resetting Callback Properties” on page 6-16

• “Permanently Removing Objects” on page 6-16

What Happens When the Client Session Ends
When you close the client session of Distributed Computing Toolbox, all of
the objects in the workspace are cleared. However, the objects in MATLAB
Distributed Computing Engine remain in place. Job objects and task objects
reside on the job manager. Local objects in the client session can refer to job
managers, jobs, tasks, and workers. When the client session ends, only these
local reference objects are lost, not the actual objects in the engine.

Therefore, if you have submitted your job to the job queue for execution, you
can quit your client session of MATLAB, and the job will be executed by the
job manager. The job manager maintains its job and task objects. You can
retrieve the job results later in another client session.

Recovering Objects
A client session of Distributed Computing Toolbox can access any of the
objects in MATLAB Distributed Computing Engine, whether the current
client session or another client session created these objects.

You create job manager and worker objects in the client session by using the
findResource function. These client objects refer to sessions running in the
engine.

jm = findResource('scheduler','type','jobmanager', ...
'Name','Job_Mgr_123','LookupURL','JobMgrHost')

If your network supports multicast, you can find all available job managers by
omitting any specific property information.

jm_set = findResource('scheduler','type','jobmanager')

6-15

6 Programming Distributed Jobs

The array jm_set contains all the job managers accessible from the client
session. You can index through this array to determine which job manager
is of interest to you.

jm = jm_set(2)

When you have access to the job manager by the object jm, you can create
objects that reference all those objects contained in that job manager. All the
jobs contained in the job manager are accessible in its Jobs property, which is
an array of job objects.

all_jobs = get(jm,'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a job manager for
particular job identified by any of its properties, such as its State.

finished_jobs = findJob(jm,'State','finished')

This command returns an array of job objects that reference all finished jobs
on the job manager jm.

Resetting Callback Properties
When restarting a client session, you lose the settings of any callback
properties (for example, the FinishedFcn property) on jobs or tasks. These
properties are commonly used to get notifications in the client session of state
changes in their objects. When you create objects in a new client session that
reference existing jobs or tasks, you must reset these callback properties if
you intend to use them.

Permanently Removing Objects
Jobs in the job manager continue to exist even after they are finished, and
after the job manager is stopped and restarted. The ways to permanently
remove jobs from the job manager are explained in the following sections:

• “Destroying Selected Objects” on page 6-17

• “Starting a Job Manager from a Clean State” on page 6-17

6-16

Using a Job Manager

Destroying Selected Objects. From the command line in the MATLAB
client session, you can call the destroy function for any job or task object. If
you destroy a job, you destroy all tasks contained in that job.

For example, find and destroy all finished jobs in your job manager that
belong to the user joep.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager','LookupURL','JobMgrHost')

finished_jobs = findJob(jm,'State','finished','UserName','joep')
destroy(finished_jobs)
clear finished_jobs

The destroy function permanently removes these jobs from the job manager.
The clear function removes the object references from the local MATLAB
workspace.

Starting a Job Manager from a Clean State. When a job manager starts,
by default it starts so that it resumes its former session with all jobs intact.
Alternatively, a job manager can start from a clean state with all its former
history deleted. Starting from a clean state permanently removes all job and
task data from the job manager of the specified name on a particular host.

As a network administration feature, the -clean flag of the job manager
startup script is described in “Starting in a Clean State” in the MATLAB
Distributed Computing Engine System Administrator’s Guide.

6-17

6 Programming Distributed Jobs

Using a Fully Supported Third-Party Scheduler

In this section...

“Creating and Running Jobs with an LSF or CCS Scheduler” on page 6-18

“Sharing Code” on page 6-25

“Managing Objects” on page 6-27

Creating and Running Jobs with an LSF or CCS
Scheduler
If your network already uses a Load Sharing Facility (LSF) or Windows
Compute Cluster Server (CCS), you can use Distributed Computing Toolbox to
create jobs to be distributed by your existing scheduler. This section provides
instructions for using your scheduler.

This section details the steps of a typical programming session with
Distributed Computing Toolbox for jobs distributed to workers by a fully
supported third-party scheduler.

This section assumes you have LSF or CCS installed and
running on your network. For more information about LSF, see
http://www.platform.com/Products/. For more information about CCS, see
http://www.microsoft.com/windowsserver2003/ccs/default.mspx.

The following sections illustrate how to program Distributed Computing
Toolbox to use these schedulers:

• “Find an LSF Scheduler” on page 6-19

• “Find a CCS Scheduler” on page 6-20

• “Create a Job” on page 6-21

• “Create Tasks” on page 6-23

• “Submit a Job to the Job Queue” on page 6-23

• “Retrieve the Job’s Results” on page 6-24

6-18

http://www.platform.com/Products/
http://www.microsoft.com/windowsserver2003/ccs/default.mspx

Using a Fully Supported Third-Party Scheduler

Find an LSF Scheduler
You use the findResource function to identify the LSF scheduler and to create
an object representing the scheduler in your local MATLAB client session.

You specify 'lsf' as the scheduler type for findResource to search for.

sched = findResource('scheduler','type','lsf')

You set properties on the scheduler object to specify

• Where the job data is stored

• That the workers should access job data directly in a shared file system

• The MATLAB root for the workers to use

set(sched, 'DataLocation', '\\apps\data\project_55')
set(sched, 'HasSharedFilesystem', true)
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note In a shared file system, all nodes require access to the directory specified
in the scheduler object’s DataLocation directory. See the DataLocation
reference page for information on setting this property for a mixed-platform
environment.

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)

Type: 'lsf'

DataLocation: '\\apps\data\project_55'

HasSharedFilesystem: 1

Jobs: [0x1 double]

6-19

6 Programming Distributed Jobs

ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'unix'

UserData: []

ClusterSize: Inf

ClusterName: 'CENTER_MATRIX_CLUSTER'

MasterName: 'masterhost.clusternet.ourdomain.com'

SubmitArguments: ''

ParallelSubmissionWrapperScript: [1x92 char]

Configuration: ''

Find a CCS Scheduler
You use the findResource function to identify the CCS scheduler and to create
an object representing the scheduler in your local MATLAB client session.

You specify 'ccs' as the scheduler type for findResource to search for.

sched = findResource('scheduler','type','ccs')

You set properties on the scheduler object to specify

• Where the job data is stored

• That the workers should access job data directly in a shared file system

• The MATLAB root for the workers to use

• The operating system of the cluster

• The name of the scheduler host

set(sched, 'DataLocation', '\\apps\data\project_106')
set(sched, 'HasSharedFilesystem', true)
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')
set(shced, 'ClusterOsType', 'pc')
set(sched, 'SchedulerHostname', 'server04')

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close

6-20

Using a Fully Supported Third-Party Scheduler

the client session or when you remove the object from the client workspace
with delete or clear all.

Note In a shared file system, all nodes require access to the directory
specified in the scheduler object’s DataLocation directory.

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)
Type: 'ccs'

DataLocation: '\\apps\data\project_106'
HasSharedFilesystem: 1

Jobs: [0x1 double]
ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'pc'
UserData: []

ClusterSize: Inf
SchedulerHostname: 'server04'

Configuration: ''

Create a Job
You create a job with the createJob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Name: 'Job1'

ID: 1
UserName: 'eng1'

Tag: ''
State: 'pending'

CreateTime: 'Fri Jul 29 16:15:47 EDT 2005'

6-21

6 Programming Distributed Jobs

SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.lsfscheduler]

UserData: []
Configuration: ''

This output varies only slightly between LSF and CCS jobs, but is quite
different from a job that uses a job manager. For example, jobs on LSF or CCS
schedulers have no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched, 'Jobs')
Jobs: [1x1 distcomp.simplejob]

You can transfer files to the worker by using the FileDependencies
property of the job object. Workers can access shared files by using
the PathDependencies property of the job object. For details, see the
FileDependencies and PathDependencies reference pages and “Sharing
Code” on page 6-25.

Note In a shared file system, MATLAB clients on many computers can access
the same job data on the network. Properties of a particular job or task should
be set from only one computer at a time.

6-22

Using a Fully Supported Third-Party Scheduler

Create Tasks
After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are all identical except for different arguments or
data. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =

distcomp.simpletask: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of job j to MATLAB workers for
evaluation. For each task, the scheduler starts a MATLAB worker session on
a worker node; this MATLAB worker session runs for only as long as it takes
to evaluate the one task. If the same node evaluates another task in the same
job, it does so with a different MATLAB worker session.

6-23

6 Programming Distributed Jobs

The job runs asynchronously with the MATLAB client. If you need to wait for
the job to complete before you continue in your MATLAB client session, you
can use the waitForState function.

waitForState(j)

The default state to wait for is finished. This function causes MATLAB to
pause until the State property of j is 'finished'.

Note When you use an LSF scheduler in a nonshared file system, the
scheduler might report that a job is in the finished state even though LSF
might not yet have completed transferring the job’s files.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660

6-24

Using a Fully Supported Third-Party Scheduler

0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Sharing Code
Because different machines evaluate the tasks of a job, each machine must
have access to all the files needed to evaluate its tasks. The following sections
explain the basic mechanisms for sharing data:

• “Directly Accessing Files” on page 6-25

• “Passing Data Between Sessions” on page 6-26

• “Passing M-Code for Startup and Finish” on page 6-26

Directly Accessing Files
If all the workers have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
correct places. You can define the path by

• Using the job’s PathDependencies property. This is the preferred method
for setting the path, because it is specific to the job.

• Putting the path command in any of the appropriate startup files for the
worker:

- matlabroot\toolbox\local\startup.m

- matlabroot\toolbox\distcomp\user\jobStartup.m

- matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

6-25

6 Programming Distributed Jobs

Passing Data Between Sessions
A number of properties on task and job objects are for passing code or data
from client to scheduler or worker, and back. This information could include
M-code necessary for task evaluation, or the input data for processing or
output data resulting from task evaluation. All these properties are described
in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because depending on file caching, the data might be passed to
a worker node only once per job, saving time if that node is evaluating
more than one task for the job.

• FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

• PathDependencies — This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the
worker’s MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean a worker session as it begins
or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

6-26

Using a Fully Supported Third-Party Scheduler

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass
them to the job as part of the FileDependencies property, or include the
pathnames to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any of
these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

Managing Objects
Objects that the client session uses to interact with the scheduler are only
references to data that is actually contained in the directory specified by
the DataLocation property. After jobs and tasks are created, you can shut
down your client session, restart it, and your job will still be stored in that
remote location. You can find existing jobs using the Jobs property of the
recreated scheduler object.

The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends?” on page 6-28

• “Recovering Objects” on page 6-28

6-27

6 Programming Distributed Jobs

• “Destroying Jobs” on page 6-29

What Happens When the Client Session Ends?
When you close the client session of Distributed Computing Toolbox, all of the
objects in the workspace are cleared. However, job and task data remains in
the directory identified by DataLocation. When the client session ends, only
its local reference objects are lost, not the data of the scheduler.

Therefore, if you have submitted your job to the scheduler job queue for
execution, you can quit your client session of MATLAB, and the job will be
executed by the scheduler. The scheduler maintains its job and task data. You
can retrieve the job results later in another client session.

Recovering Objects
A client session of Distributed Computing Toolbox can access any of the
objects in the DataLocation, whether the current client session or another
client session created these objects.

You create scheduler objects in the client session by using the findResource
function. These objects refer to jobs listed in the scheduler, whose data is
found in the specified DataLocation.

sched = findResource('scheduler', 'type', 'LSF');
set(sched, 'DataLocation', '/apps/data/project_88');

When you have access to the scheduler by the object sched, you can create
objects that reference all the data contained in the specified location for that
scheduler. All the job and task data contained in the scheduler data location
are accessible in the scheduler object’s Jobs property, which is an array of job
objects.

all_jobs = get(sched, 'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a scheduler object
for a particular job identified by any of its properties, such as its State.

finished_jobs = findJob(sched, 'State', 'finished')

6-28

Using a Fully Supported Third-Party Scheduler

This command returns an array of job objects that reference all finished jobs
on the scheduler sched, whose data is found in the specified DataLocation.

Destroying Jobs
Jobs in the scheduler continue to exist even after they are finished. From
the command line in the MATLAB client session, you can call the destroy
function for any job object. If you destroy a job, you destroy all tasks contained
in that job. The job and task data is deleted from the DataLocation directory.

For example, find and destroy all finished jobs in your scheduler whose data is
stored in a specific directory.

sched = findResource('scheduler', 'name', 'LSF');
set(sched, 'DataLocation', '/apps/data/project_88');
finished_jobs = findJob(sched, 'State', 'finished');
destroy(finished_jobs);
clear finished_jobs

The destroy function in this example permanently removes from the
scheduler data those finished jobs whose data is in /apps/data/project_88.
The clear function removes the object references from the local MATLAB
client workspace.

6-29

6 Programming Distributed Jobs

Using the Generic Scheduler Interface

In this section...

“Overview” on page 6-30

“MATLAB Client Submit Function” on page 6-31

“Example — Writing the Submit Function” on page 6-35

“MATLAB Worker Decode Function” on page 6-36

“Example — Writing the Decode Function” on page 6-38

“Example — Programming and Running a Job in the Client” on page 6-39

“Supplied Submit and Decode Functions” on page 6-44

“Summary” on page 6-45

Overview
Distributed Computing Toolbox provides a generic interface that lets you
interact with third-party schedulers, or use your own scripts for distributing
tasks to other nodes on the cluster for evaluation.

Because each job in your application is comprised of several tasks, the purpose
of your scheduler is to allocate a cluster node for the evaluation of each task,
or to distribute each task to a cluster node. The scheduler starts remote
MATLAB worker sessions on the cluster nodes to evaluate individual tasks
of the job. To evaluate its task, a MATLAB worker session needs access to
certain information, such as where to find the job and task data. The generic
scheduler interface provides a means of getting tasks from your Distributed
Computing Toolbox (client) session to your scheduler and thereby to your
cluster nodes.

To evaluate a task, a worker requires five parameters that you must pass from
the client to the worker. The parameters can be passed any way you want to
transfer them, but because a particular one must be an environment variable,
the examples in this section pass all parameters as environment variables.

6-30

Using the Generic Scheduler Interface

��������	
�

��
���������� �����	�����
���������

������
������	�

�	������	
�

��
�����	���������	�����
���������

���	
�
������	�

����
����

Note Whereas a MathWorks job manager keeps MATLAB workers running
between tasks, a third-party scheduler runs MATLAB workers for only as
long as it takes each worker to evaluate its one task.

MATLAB Client Submit Function
When you submit a job to a scheduler, the function identified by the scheduler
object’s SubmitFcn property executes in the MATLAB client session. You
set the scheduler’s SubmitFcn property to identify the submit function and
any arguments you might want to send to it. For example, to use a submit
function called mysubmitfunc, you set the property with the command

set(sched, 'SubmitFcn', @mysubmitfunc)

where sched is the scheduler object in the client session, created with the
findResource function. In this case, the submit function gets called with its
three default arguments: scheduler, job, and properties object, in that order.
The function declaration line of the function might look like this:

function mysubmitfunc(scheduler, job, props)

Inside the function of this example, the three argument objects are known as
scheduler, job, and props.

You can write a submit function that accepts more than the three default
arguments, and then pass those extra arguments by including them in the
definition of the SubmitFcn property.

6-31

6 Programming Distributed Jobs

time_limit = 300
testlocation = 'Plant30'
set(sched, 'SubmitFcn', {@mysubmitfunc, time_limit, testlocation})

In this example, the submit function requires five arguments: the three
defaults, along with the numeric value of time_limit and the string value of
testlocation. The function’s declaration line might look like this:

function mysubmitfunc(scheduler, job, props, localtimeout, plant)

The following discussion focuses primarily on the minimum requirements
of the submit and decode functions.

This submit function has three main purposes:

• To identify the decode function that MATLAB workers run when they start

• To make information about job and task data locations available to the
workers via their decode function

• To instruct your scheduler how to start a MATLAB worker on the cluster
for each task of your job

��������	
�

��
����������

�����	���������������

������
������	�

����
����

���� ���!�� "#$�
%!$
���� �
!&�'� �!$�
&#�
!&
���� �
!&�'� �!��
%!$
���� (!� �!��
%!$
����
��) �!��
%!$

����������

�	�*����+

		��	,

-	�.������"��

�����

�	�
�

Identifying the Decode Function
The client’s submit function and the worker’s decode function work together
as a pair. Therefore, the submit function must identify its corresponding
decode function. The submit function does this by setting the environment

6-32

Using the Generic Scheduler Interface

variable MDCE_DECODE_FUNCTION. The value of this variable is a string
identifying the name of the decode function on the path of the MATLAB
worker. Neither the decode function itself nor its name can be passed to the
worker in a job or task property; the file must already exist before the worker
starts. For more information on the decode function, see “MATLAB Worker
Decode Function” on page 6-36.

Passing Job and Task Data
The third input argument (after scheduler and job) to the submit function is
the object with the properties listed in the following table.

You do not set the values of any of these properties. They are automatically
set by the toolbox so that you can program your submit function to forward
them to the worker nodes.

Property Name Description

StorageConstructor String. Used internally to indicate
that a file system is used to contain
job and task data.

StorageLocation String. Derived from the scheduler
DataLocation property.

JobLocation String. Indicates where this job’s
data is stored.

TaskLocations Cell array. Indicates where each
task’s data is stored. Each element
of this array is passed to a separate
worker.

NumberOfTasks Double. Indicates the number of
tasks in the job. You do not need to
pass this value to the worker, but
you can use it within your submit
function.

With these values passed into your submit function, the function can pass
them to the worker nodes by any of several means. However, because the

6-33

6 Programming Distributed Jobs

name of the decode function must be passed as an environment variable, the
examples that follow pass all the other necessary property values also as
environment variables.

The submit function writes the values of these object properties out to
environment variables with the setenv function.

Defining Scheduler Command to Run MATLAB
The submit function must define the command necessary for your scheduler
to start MATLAB workers. The actual command is specific to your scheduler
and network configuration. The commands for some popular schedulers are
listed in the following table. This table also indicates whether or not the
scheduler automatically passes environment variables with its submission. If
not, your command to the scheduler must accommodate these variables.

Scheduler Scheduler Command
Passes Environment
Variables

Condor condor_submit Not by default.
Command can pass
all or specific variables.

LSF bsub Yes, by default.

PBS qsub Command must specify
which variables to pass.

Sun Grid Engine qsub Command must specify
which variables to pass.

Your submit function might also use some of these properties and others when
constructing and invoking your scheduler command. scheduler, job, and
props (so named only for this example) refer to the first three arguments to
the submit function.

Argument Object Property

scheduler MatlabCommandToRun

scheduler ClusterMatlabRoot

job MinimumNumberOfWorkers

6-34

Using the Generic Scheduler Interface

Argument Object Property

job MaximumNumberOfWorkers

props NumberOfTasks

Example — Writing the Submit Function
The submit function in this example uses environment variables to pass the
necessary information to the worker nodes. Each step below indicates the
lines of code you add to your submit function.

1 Create the function declaration. There are three objects automatically
passed into the submit function as its first three input arguments: the
scheduler object, the job object, and the props object.

function mysubmitfunc(scheduler, job, props)

This example function uses only the three default arguments. You can have
additional arguments passed into your submit function, as discussed in
“MATLAB Client Submit Function” on page 6-31.

2 Identify the values you want to send to your environment variables. For
convenience, you define local variables for use in this function.

decodeFcn = 'mydecodefunc';
jobLocation = get(props, 'JobLocation');
taskLocations = get(props, 'TaskLocations'); %This is a cell array
storageLocation = get(props, 'StorageLocation');
storageConstructor = get(props, 'StorageConstructor');

The name of the decode function that must be available on the MATLAB
worker path is mydecodefunc.

3 Set the environment variables, other than the task locations. All the
MATLAB workers use these values when evaluating tasks of the job.

setenv('MDCE_DECODE_FUNCTION', decodeFcn);
setenv('MDCE_JOB_LOCATION', jobLocation);
setenv('MDCE_STORAGE_LOCATION', storageLocation);
setenv('MDCE_STORAGE_CONSTRUCTOR', storageConstructor);

6-35

6 Programming Distributed Jobs

Your submit function can use any names you choose for the environment
variables, with the exception of MDCE_DECODE_FUNCTION; the MATLAB
worker looks for its decode function identified by this variable. If you use
alternative names for the other environment variables, be sure that the
corresponding decode function also uses your alternative variable names.

4 Set the task-specific variables and scheduler commands. This is where you
instruct your scheduler to start MATLAB workers for each task.

for i = 1:props.NumberOfTasks
setenv('MDCE_TASK_LOCATION', taskLocations{i});
constructSchedulerCommand;

end

The line constructSchedulerCommand represents the code you write to
construct and execute your scheduler’s submit command. This command
is typically a string that combines the scheduler command with necessary
flags, arguments, and values derived from the properties of your distributed
computing object properties. This command is inside the for-loop so that
your scheduler gets a command to start a MATLAB worker on the cluster
for each task.

Note If you are not familiar with your network scheduler, ask your system
administrator for help.

MATLAB Worker Decode Function
The sole purpose of the MATLAB worker’s decode function is to read certain
job and task information into the MATLAB worker session. This information
could be stored in disk files on the network, or it could be available as
environment variables on the worker node. Because the discussion of the
submit function illustrated only the usage of environment variables, so does
this discussion of the decode function.

When working with the decode function, you must be aware of the

• Name and location of the decode function itself

• Names of the environment variables this function must read

6-36

Using the Generic Scheduler Interface

�	������	
�

��
�����	���������	���������������

���	
�
������	�

����
����

���� ���!�� "#$�
%!$
���� �
!&�'� �!$�
&#�
!&
���� �
!&�'� �!��
%!$
���� (!� �!��
%!$
����
��) �!��
%!$

������

�����	���

Identifying File Name and Location
The client’s submit function and the worker’s decode function work together
as a pair. For more information on the submit function, see “MATLAB
Client Submit Function” on page 6-31. The decode function on the worker is
identified by the submit function as the value of the environment variable
MDCE_DECODE_FUNCTION. The environment variable must be copied from the
client node to the worker node. Your scheduler might perform this task for
you automatically; if it does not, you must arrange for this copying.

The value of the environment variable MDCE_DECODE_FUNCTION defines the
filename of the decode function, but not its location. The file cannot be passed
as part of the job PathDependencies or FileDependencies property, because
the function runs in the MATLAB worker before that session has access to
the job. Therefore, the file location must be available to the MATLAB worker
as that worker starts.

Note The decode function must be available on the MATLAB worker’s path.

You can get the decode function on the worker’s path by either moving the file
into a directory on the path (for example, matlabroot/toolbox/local), or by
having the scheduler use cd in its command so that it starts the MATLAB
worker from within the directory that contains the decode function.

6-37

6 Programming Distributed Jobs

In practice, the decode function might be identical for all workers on the
cluster. In this case, all workers can use the same decode function file if it is
accessible on a shared drive.

When a MATLAB worker starts, it automatically runs the file identified by
the MDCE_DECODE_FUNCTION environment variable. This decode function runs
before the worker does any processing of its task.

Reading the Job and Task Information
When the environment variables have been transferred from the client to
the worker nodes (either by the scheduler or some other means), the decode
function of the MATLAB worker can read them with the getenv function.

With those values from the environment variables, the decode function must
set the appropriate property values of the object that is its argument. The
property values that must be set are the same as those in the corresponding
submit function, except that instead of the cell array TaskLocations, each
worker has only the individual string TaskLocation, which is one element of
the TaskLocations cell array. Therefore, the properties you must set within
the decode function on its argument object are as follows:

• StorageConstructor

• StorageLocation

• JobLocation

• TaskLocation

Example — Writing the Decode Function
The decode function must read four environment variables and use their
values to set the properties of the object that is the function’s output.

In this example, the decode function’s argument is the object props.

function props = workerDecodeFunc(props)
% Read the environment variables:
storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
storageLocation = getenv('MDCE_STORAGE_LOCATION');
jobLocation = getenv('MDCE_JOB_LOCATION');

6-38

Using the Generic Scheduler Interface

taskLocation = getenv('MDCE_TASK_LOCATION');
%
% Set props object properties from the local variables:
set(props, 'StorageConstructor', storageConstructor);
set(props, 'StorageLocation', storageLocation);
set(props, 'JobLocation', jobLocation);
set(props, 'TaskLocation', taskLocation);

When the object is returned from the decode function to the MATLAB worker
session, its values are used internally for managing job and task data.

Example — Programming and Running a Job in the
Client

1. Create a Scheduler Object
You use the findResource function to create an object representing the
scheduler in your local MATLAB client session.

You can specify 'generic' as the name for findResource to search for.
(Any scheduler name starting with the string 'generic' creates a generic
scheduler object.)

sched = findResource('scheduler', 'type', 'generic')

Generic schedulers must use a shared file system for workers to access job
and task data. Set the DataLocation and HasSharedFilesystem properties
to specify where the job data is stored and that the workers should access job
data directly in a shared file system.

set(sched, 'DataLocation', '\\apps\data\project_101')
set(sched, 'HasSharedFilesystem', true)

Note All nodes require access to the directory specified in the scheduler
object’s DataLocation directory. See the DataLocation reference page for
information on setting this property for a mixed-platform environment.

6-39

6 Programming Distributed Jobs

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler, which might not be accessible
to the worker nodes.

If MATLAB is not on the worker’s system path, set the ClusterMatlabRoot
property to specify where the workers are to find the MATLAB installation.

set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

You can look at all the property settings on the scheduler object. If no jobs
are in the DataLocation directory, the Jobs property is a 0-by-1 array. All
settable property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the object
from the client workspace with delete or clear all.

get(sched)
Type: 'generic'

DataLocation: '\\apps\data\project_101'
HasSharedFilesystem: 1

Jobs: [0x1 double]
ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'pc'
UserData: []

ClusterSize: Inf
MatlabCommandToRun: 'worker'

SubmitFcn: []
ParallelSubmitFcn: []

Configuration: ''

You must set the SubmitFcn property to specify the submit function for this
scheduler.

set(sched, 'SubmitFcn', @mysubmitfunc)

With the scheduler object and the user-defined submit and decode functions
defined, programming and running a job is now similar to doing so with a job
manager or any other type of scheduler.

6-40

Using the Generic Scheduler Interface

2. Create a Job
You create a job with the createJob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Name: 'Job1'

ID: 1
UserName: 'neo'

Tag: ''
State: 'pending'

CreateTime: 'Fri Jan 20 16:15:47 EDT 2006'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.genericscheduler]

UserData: []

Note Properties of a particular job or task should be set from only one
computer at a time.

This generic scheduler job has somewhat different properties than a job that
uses a job manager. For example, this job has no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

6-41

6 Programming Distributed Jobs

get(sched)
Type: 'generic'

DataLocation: '\\apps\data\project_101'
HasSharedFilesystem: 1

Jobs: [1x1 distcomp.simplejob]
ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'pc'
UserData: []

ClusterSize: Inf
MatlabCommandToRun: 'worker'

SubmitFcn: @mysubmitfunc
ParallelSubmitFcn: []

Configuration: ''

3. Create Tasks
After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are identical except for different arguments or data.
In this example, each task generates a 3-by-3 matrix of random numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =

distcomp.simpletask: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

6-42

Using the Generic Scheduler Interface

4. Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before
you continue in your MATLAB client session, you can use the waitForState
function.

waitForState(j)

The default state to wait for is finished or failed. This function pauses
MATLAB until the State property of j is 'finished' or 'failed'.

5. Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

6-43

6 Programming Distributed Jobs

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Supplied Submit and Decode Functions
There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the directory

matlabroot/toolbox/distcomp/examples/integration

In this directory are subdirectories for each of several types of
scheduler, containing wrappers, submit functions, and decode
functions for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs contains the
following files for use with a PBS scheduler:

Filename Description

pbsSubmitFcn.m Submit function for a distributed job

pbsDecodeFunc.m Decode function for a distributed job

pbsParallelSubmitFcn.m Submit function for a parallel job

pbsParallelDecode.m Decode function for a parallel job

pbsWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

pbsParallelWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

At the time of publication, there are directories for PBS (pbs), LSF (lsf),
generic UNIX (ssh), Sun Grid Engine (sge), and mpiexec on Windows

6-44

Using the Generic Scheduler Interface

(winmpiexec). In addition, the PBS and LSF directories have subdirectories
called nonshared, which contain scripts for use when there is a nonshared file
system between the client and cluster computers. Each of these subdirectories
contains a file called README, which provides instruction on how to use its
scripts.

As more files or solutions might become available at any time, visit
the support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This page also provides contact information in case you have any questions.

Summary
The following list summarizes the sequence of events that occur when running
a job that uses the generic scheduler interface:

1 Provide a submit function and a decode function. Be sure the decode
function is on all the MATLAB workers’ paths.

The following steps occur in the MATLAB client session:

2 Define the SubmitFcn property of your scheduler object to point to the
submit function.

3 Send your job to the scheduler.

submit(job)

4 The client session runs the submit function.

5 The submit function sets environment variables with values derived from
its arguments.

6 The submit function makes calls to the scheduler — generally, a call for
each task (with environment variables identified explicitly, if necessary).

The following step occurs in your network:

7 For each task, the scheduler starts a MATLAB worker session on a cluster
node.

6-45

http://www.mathworks.com/support/product/product.html?product=DM

6 Programming Distributed Jobs

The following steps occur in each MATLAB worker session:

8 The MATLAB worker automatically runs the decode function, finding it
on the path.

9 The decode function reads the pertinent environment variables.

10 The decode function sets the properties of its argument object with values
from the environment variables.

11 The MATLAB worker uses these object property values in processing its
task without your further intervention.

6-46

7

Programming Parallel Jobs

Parallel jobs are those in which the workers (or labs) can communicate
with each other during the evaluation of their tasks. The following sections
describe how to program parallel jobs:

Introduction (p. 7-2) Explains the difference between
distributed and parallel jobs

Using a Supported Scheduler (p. 7-4) Explains how to program a parallel
job using a job manager, local
scheduler, or other supported
scheduler

Using the Generic Scheduler
Interface (p. 7-7)

Explains how to program a parallel
job using the generic scheduler
interface to work with any scheduler

Further Notes on Parallel Jobs
(p. 7-10)

Provides useful information for
programming parallel jobs

7 Programming Parallel Jobs

Introduction
A parallel job consists of only a single task that runs simultaneously on
several workers. More specifically, the task is duplicated on each worker, so
each worker can perform the task on a different set of data, or on a particular
segment of a large data set. The workers can communicate with each other as
each executes its task. In this configuration, workers are referred to as labs.

In principle, creating and running parallel jobs is similar to programming
distributed jobs:

1 Find a scheduler.

2 Create a parallel job.

3 Create a task.

4 Submit the job for running.

5 Retrieve the results.

The differences between distributed jobs and parallel jobs are summarized
in the following table.

Distributed Job Parallel Job

MATLAB sessions, called workers,
perform the tasks but do not
communicate with each other.

MATLAB sessions, called labs, can
communicate with each other during
the running of their tasks.

You define any number of tasks in
a job.

You define only one task in a job.
Duplicates of that task run on all
labs running the parallel job.

Tasks need not run simultaneously.
Tasks are distributed to workers as
the workers become available, so a
worker can perform several of the
tasks in a job.

Tasks run simultaneously, so you can
run the job only on as many labs as
are available at run time. The start
of the job might be delayed until the
required number of labs is available.

7-2

Introduction

A parallel job has only one task that runs simultaneously on every lab. The
function that the task runs can take advantage of a lab’s awareness of how
many labs are running the job, which lab this is among those running the job,
and the features that allow labs to communicate with each other.

7-3

7 Programming Parallel Jobs

Using a Supported Scheduler

In this section...

“Coding the Task Function” on page 7-4

“Coding in the Client” on page 7-5

Coding the Task Function
You can run a parallel job using any type of scheduler. This section illustrates
how to program parallel jobs for supported schedulers (job manager, local
scheduler, CCS, LSF, or mpiexec).

In this example, the lab whose labindex value is 1 creates a magic square
comprised of a number of rows and columns that is equal to the number of
labs running the job (numlabs). In this case, four labs run a parallel job with a
4-by-4 magic square. The first lab broadcasts the matrix with labBroadcast
to all the other labs , each of which calculates the sum of one column of the
matrix. All of these column sums are combined with the gplus function to
calculate the total sum of the elements of the original magic square.

The function for this example is shown below.

function total_sum = colsum
if labindex == 1

% Send magic square to other labs
A = labBroadcast(1,magic(numlabs))

else
% Receive broadcast on other labs
A = labBroadcast(1)

end

% Calculate sum of column identified by labindex for this lab
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all labs
total_sum = gplus(column_sum)

7-4

Using a Supported Scheduler

This function is saved as the file colsum.m on the path of the MATLAB client.
It will be sent to each lab by the job’s FileDependencies property.

While this example has one lab create the magic square and broadcast it
to the other labs, there are alternative methods of getting data to the labs.
Each lab could create the matrix for itself. Alternatively, each lab could read
its part of the data from a common file, the data could be passed in as an
argument to the task function, or the data could be sent in a file contained in
the job’s FileDependencies property. The solution to choose depends on your
network configuration and the nature of the data.

Coding in the Client
As with distributed jobs, you find a scheduler and create a scheduler object in
your MATLAB client by using the findResource function. There are slight
differences in the arguments for findResource, depending on the scheduler
you use, but using configurations to define as many properties as possible
minimizes coding differences between the scheduler types.

You can create and configure the scheduler object with this code:

sched = findResource('scheduler', 'configuration', myconfig)
set(sched, 'Configuration', myconfig)

where myconfig is the name of a user-defined configuration for the type of
scheduler you are using. Any required differences for various scheduling
options are controlled in the configuration. You can have one or more
separate configurations for each type of scheduler. For complete details, see
“Programming with User Configurations” on page 2-6. Create or modify
configurations according to the instructions of your system administrator.

When your scheduler object is defined, you create the job object with the
createParallelJob function.

pjob = createParallelJob(sched);

The function file colsum.m (created in “Coding the Task Function” on page
7-4) is on the MATLAB client path, but it has to be made available to the labs.
One way to do this is with the job’s FileDependencies property.

set(pjob, 'FileDependencies', {'colsum.m'})

7-5

7 Programming Parallel Jobs

Here you might also set other properties on the job, for example, setting the
number of workers to use. Again, configurations might be useful in your
particular situation, especially if most of your jobs require many of the same
property settings. This example runs on four labs (the maximum available
with a local scheduler), which can be established in the configuration, or can
be set by the following client code:

set(pjob, 'MaximumNumberOfWorkers', 4)
set(pjob, 'MinimumNumberOfWorkers', 4)

You create the job’s one task with the usual createTask function. In this
example, the task returns only one argument from each lab, and there are no
input arguments to the colsum function.

t = createTask(pjob, @colsum, 1, {})

Use submit to run the job.

submit(pjob)

Make the MATLAB client wait for the job to finish before collecting the
results. The results consist of one value from each lab. The gplus function in
the task shares data between the labs, so that each lab has the same result.

waitForState(pjob)
results = getAllOutputArguments(pjob)
results =

[136]
[136]
[136]
[136]

7-6

Using the Generic Scheduler Interface

Using the Generic Scheduler Interface

In this section...

“Introduction” on page 7-7

“Coding in the Client” on page 7-7

Introduction
This section discusses programming parallel jobs using the generic scheduler
interface. This interface lets you execute jobs on your cluster with any
scheduler you might have.

The principles of using the generic scheduler interface for parallel jobs are the
same as those for distributed jobs. The overview of the concepts and details of
submit and decode functions for distributed jobs are discussed fully in “Using
the Generic Scheduler Interface” on page 6-30 in the chapter on Programming
Distributed Jobs.

Coding in the Client

Configuring the Scheduler Object
Coding a parallel job for a generic scheduler involves the same procedure
as coding a distributed job.

1 Create an object representing your scheduler with findResource.

2 Set the appropriate properties on the scheduler object. Because the
scheduler itself is often common to many users and applications, it is
probably best to use a configuration for programming these properties. See
“Programming with User Configurations” on page 2-6.

Among the properties required for a parallel job is ParallelSubmitFcn.
The toolbox comes with several submit functions for various schedulers
and platforms; see the following section, “Supplied Submit and Decode
Functions” on page 7-8.

7-7

7 Programming Parallel Jobs

3 Use createParallelJob to create a parallel job object for your scheduler.

4 Create a task, run the job, and retrieve the results as usual.

Supplied Submit and Decode Functions
There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the directory

matlabroot/toolbox/distcomp/examples/integration

In this directory are subdirectories for each of several types of
scheduler, containing wrappers, submit functions, and decode
functions for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs contains the
following files for use with a PBS scheduler:

Filename Description

pbsSubmitFcn.m Submit function for a distributed job

pbsDecodeFunc.m Decode function for a distributed job

pbsParallelSubmitFcn.m Submit function for a parallel job

pbsParallelDecode.m Decode function for a parallel job

pbsWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

pbsParallelWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

At the time of publication, there are directories for PBS (pbs), LSF (lsf),
generic UNIX (ssh), Sun Grid Engine (sge), and mpiexec on Windows
(winmpiexec). In addition, the PBS and LSF directories have subdirectories
called nonshared, which contain scripts for use when there is a nonshared file
system between the client and cluster computers. Each of these subdirectories

7-8

Using the Generic Scheduler Interface

contains a file called README, which provides instruction on how to use its
scripts.

As more files or solutions might become available at any time, visit
the Support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This page also provides contact information in case you have any questions.

7-9

http://www.mathworks.com/support/product/product.html?product=DM

7 Programming Parallel Jobs

Further Notes on Parallel Jobs

In this section...

“Number of Tasks in a Parallel Job” on page 7-10

“Avoiding Deadlock and Other Dependency Errors” on page 7-10

Number of Tasks in a Parallel Job
Although you create only one task for a parallel job, the system copies this
task for each worker that runs the job. For example, if a parallel job runs on
four workers (labs), the Tasks property of the job contains four task objects.
The first task in the job’s Tasks property corresponds to the task run by the
lab whose labindex is 1, and so on, so that the ID property for the task object
and labindex for the lab that ran that task have the same value. Therefore,
the sequence of results returned by the getAllOutputArguments function
corresponds to the value of labindex and to the order of tasks in the job’s
Tasks property.

Avoiding Deadlock and Other Dependency Errors
Because code running in one lab for a parallel job can block execution until
some corresponding code executes on another lab, the potential for deadlock
exists in parallel jobs. This is most likely to occur when transferring data
between labs or when making code dependent upon the labindex in an if
statement. Some examples illustrate common pitfalls.

Suppose you have a distributed array D, and you want to use the gather
function to assemble the entire array in the workspace of a single lab.

if labindex == 1
assembled = gather(D);

end

The reason this fails is because the gather function requires communication
between all the labs across which the array is distributed. When the if
statement limits execution to a single lab, the other labs required for
execution of the function are not executing the statement. As an alternative,
you can use gather itself to collect the data into the workspace of a single lab:
assembled = gather(D, 1).

7-10

Further Notes on Parallel Jobs

In another example, suppose you want to transfer data from every lab to the
next lab on the right (defined as the next higher labindex). First you define
for each lab what the labs on the left and right are.

from_lab_left = mod(labindex - 2, numlabs) + 1;
to_lab_right = mod(labindex, numlabs) + 1;

Then try to pass data around the ring.

labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);

The reason this code might fail is because, depending on the size of the data
being transferred, the labSend function can block execution in a lab until the
corresponding receiving lab executes its labReceive function. In this case, all
the labs are attempting to send at the same time, and none are attempting to
receive while labSend has them blocked. In other words, none of the labs get
to their labReceive statements because they are all blocked at the labSend
statement. To avoid this particular problem, you can use the labSendReceive
function.

7-11

7 Programming Parallel Jobs

7-12

8

Parallel Math

This chapter describes the distribution of data across several labs, and the
functionality provided for operations on that data in parallel jobs and the
interactive parallel mode of MATLAB. The sections are as follows.

Array Types (p. 8-2) Describes the various types of arrays
used in parallel jobs, including
pmode

Working with Distributed Arrays
(p. 8-5)

Describes how to use distributed
arrays for calculation

Using a for-Loop Over a Distributed
Range (for-drange) (p. 8-17)

Describes how to program a parallel
for-loop with distributed arrays

Using MATLAB Functions on
Distributed Arrays (p. 8-20)

MATLAB functions that operate on
distributed arrays

8 Parallel Math

Array Types

In this section...

“Introduction” on page 8-2

“Nondistributed Arrays” on page 8-2

“Distributed Arrays” on page 8-4

Introduction
All built-in data types and data structures supported by MATLAB are also
supported in the MATLAB parallel computing environment. This includes
arrays of any number of dimensions containing numeric, character, logical
values, cells, or structures; but not function handles or user-defined objects.
In addition to these basic building blocks, the MATLAB parallel computing
environment also offers different types of arrays.

Nondistributed Arrays
When you create a nondistributed array, MATLAB constructs a separate array
in the workspace of each lab and assigns a common variable to them. Any
operation performed on that variable affects all individual arrays assigned
to it. If you display from lab 1 the value assigned to this variable, all labs
respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in the
workspace of each lab:

Replicated Arrays (p. 8-2)

Variant Arrays (p. 8-3)

Private Arrays (p. 8-4)

Replicated Arrays
A replicated array resides in the workspaces of all labs, and its size and
content are identical on all labs. When you create the array, MATLAB assigns
it to the same variable on all labs. If you display at the pmode prompt the
value assigned to this variable, all labs respond by showing the same array.

8-2

Array Types

P>> A = magic(3)

LAB 1 LAB 2 LAB 3 LAB 4
| | |

8 1 6 | 8 1 6 | 8 1 6 | 8 1 6
3 5 7 | 3 5 7 | 3 5 7 | 3 5 7
4 9 2 | 4 9 2 | 4 9 2 | 4 9 2

Variant Arrays
A variant array also resides in the workspaces of all labs, but its content
differs on one or more labs. When you create the array, MATLAB assigns
it to the same variable on all labs. If you display at the pmode prompt the
value assigned to this variable, all labs respond by showing their version
of the array.

P>> A = magic(3) + labindex-1

LAB 1 LAB 2 LAB 3 LAB 4
| | |

8 1 6 | 9 2 7 | 10 3 8 | 11 4 9
3 5 7 | 4 6 9 | 5 7 9 | 6 8 10
4 9 2 | 5 10 3 | 6 11 4 | 7 12 5

A replicated array can become a variant array when its value becomes unique
on each lab.

P>> B = magic(3) %replicated on all labs
P>> B = B + labindex %now a variant array, different on each lab

8-3

8 Parallel Math

Private Arrays
A private array is defined on one or more, but not all labs. You could create
this array by using the lab index in a conditional statement, as shown here:

P>> if labindex >= 3; A = magic(3) + labindex - 1; end

LAB 1 LAB 2 LAB 3 LAB 4
| | |

A is | A is | 10 3 8 | 11 4 9
undefined | undefined | 5 7 9 | 6 8 10

| 6 11 4 | 7 12 5

Distributed Arrays
With replicated and variant arrays, the full content of the array is stored
in the workspace of each lab. Distributed arrays, on the other hand, are
partitioned into segments, with each segment residing in the workspace of a
different lab. Each lab has its own array segment to work with. Reducing the
size of the array that each lab has to store and process means a more efficient
use of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array A over four labs. The
resulting array D is also 3-by-10 in size, but only a segment of the full array
resides on each lab.

P>> A = [11:20; 21:30; 31:40];
P>> D = distribute(A, 2)

LAB 1 LAB 2 LAB 3 LAB 4
| | |

11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40

For more details on using distributed arrays, see “Working with Distributed
Arrays” on page 8-5.

8-4

Working with Distributed Arrays

Working with Distributed Arrays

In this section...

“How MATLAB Distributes Arrays” on page 8-5

“Creating a Distributed Array” on page 8-7

“Local Arrays” on page 8-10

“Obtaining Information About the Array” on page 8-11

“Changing the Dimension of Distribution” on page 8-13

“Restoring the Full Array” on page 8-14

“Indexing into a Distributed Array” on page 8-15

How MATLAB Distributes Arrays
When you distribute an array to a number of labs, MATLAB partitions the
array into segments and assigns one segment of the array to each lab. You
can partition a two-dimensional array horizontally, assigning columns of the
original array to the different labs, or vertically, by assigning rows. An array
with N dimensions can be partitioned along any of its N dimensions. You
choose which dimension of the array is to be partitioned by specifying it in the
array constructor command.

For example, to distribute an 80-by-1000 array to four labs, you can partition
it either by columns, giving each lab an 80-by-250 segment, or by rows, with
each lab getting a 20-by-1000 segment. If the array dimension does not divide
evenly over the number of labs, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns
it to variable A. In doing so, each lab creates an identical array in its own
workspace and assigns it to variable A, where A is local to that lab. The second
command distributes A, creating a single 80-by-1000 array D that spans all
four labs. lab 1 stores columns 1 through 250, lab 2 stores columns 251
through 500, and so on. The default distribution is by columns.

8-5

8 Parallel Math

A = zeros(80, 1000);
D = distribute(A)

1: local(D) is 80-by-250
2: local(D) is 80-by-250
3: local(D) is 80-by-250
4: local(D) is 80-by-250

Each lab has access to all segments of the array. Access to the local segment
is faster than to a remote segment, because the latter requires sending and
receiving data between labs and thus takes more time.

How MATLAB Displays a Distributed Array
MATLAB displays the local segments of a distributed array as follows for
lab 1 and lab 2. Each lab displays that part of the array that is stored in
its workspace. This part of the array is said to be local to that lab. The lab
index appears at the left.

1: local(D) =
1: 11 12
1: 21 22
1: 31 32
1: 41 42
2: local(D) =
2: 13 14
2: 23 24
2: 33 34
2: 43 44

When displaying larger distributed arrays, MATLAB prints out only the sizes
of the local segments.

1: local(D) is 4-by-250
2: local(D) is 4-by-250
3: local(D) is 4-by-250
4: local(D) is 4-by-250

8-6

Working with Distributed Arrays

Note When displayed, a distributed array can look the same as a smaller
variant array. For example, on a configuration with four labs, a 4-by-20
distributed array might appear to be the same size as a 4-by-5 variant array
because both are displayed as 4-by-5 in each lab window. You can tell the
difference either by finding the size of the array or by using the isdarray
function.

How Much Is Distributed to Each Lab
In distributing an array of N rows, if N is evenly divisible by the number of
labs, MATLAB stores the same number of rows (N/numlabs) on each lab.
When this number is not evenly divisible by the number of labs, MATLAB
partitions the array as evenly as possible.

MATLAB provides a functions called distribdim and partition that you can
use to determine the exact distribution of an array. See “Indexing Functions”
on page 8-15 for more information on dcolon.

Distribution of Other Data Types
You can distribute arrays of any MATLAB built-in data type, and also
numeric arrays that are complex or sparse, but not arrays of function handles
or object types.

Creating a Distributed Array
You can create a distributed array in any of the following ways:

• “Partitioning a Larger Array” on page 8-8 — Start with a large array that
is replicated on all labs, and partition it so that the pieces are distributed
across the labs. This is most useful when you have sufficient memory to
store the initial replicated array.

• “Building from Smaller Arrays” on page 8-9 — Start with smaller variant
or replicated arrays stored on each lab, and combine them so that each
array becomes a segment of a larger distributed array. This method saves
on memory as it lets you build a distributed array from smaller pieces.

8-7

8 Parallel Math

• “Using MATLAB Constructor Functions” on page 8-10 — Use any of the
MATLAB constructor functions like rand or zeros with the darray()
argument. These functions offer a quick means of constructing a distributed
array of any size in just one step.

Partitioning a Larger Array
If you have a large array already in memory that you want MATLAB to
process more quickly, you can partition it into smaller segments and distribute
these segments to all of the labs using the distribute function. Each lab
then has an array that is a fraction the size of the original, thus reducing the
time required to access the data that is local to each lab.

As a simple example, the following line of code creates a 4-by-8 replicated
matrix on each lab assigned to variable A:

P>> A = [11:18; 21:28; 31:38; 41:48]
A =

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

The next line uses the distribute function to construct a single 4-by-8 matrix
D that is distributed along the second dimension of the array:

P>> D = distribute(A, 2)
1: local(D) = | 2: local(D) = | 3: local(D) = | 4: local(D) =

11 12 | 13 14 | 15 16 | 17 18
21 22 | 23 24 | 25 26 | 27 28
31 32 | 33 34 | 35 36 | 37 38
41 42 | 43 44 | 45 46 | 47 48

Note that arrays A and D are the same size (4-by-8). Array A exists in its full
size on each lab, while only a segment of array D exists on each lab.

P>> whos
Name Size Bytes Class

A 4x8 256 double array
D 4x8 460 darray object

8-8

Working with Distributed Arrays

See the distribute function reference page for syntax and usage information.

Building from Smaller Arrays
The distribute function is less useful when you are using distribution to
reduce the amount of memory required to store data. This is because you
have to first construct the full array and then partition it into distributed
segments. To save on memory, you can construct the smaller pieces on each
lab first, and then combine them into a single array that is distributed across
the labs using the darray function.

This example creates a 4-by-250 variant array A on each of four labs and
then uses darray to distribute these segments across four labs, creating a
4-by-1000 distributed array. Here is the variant array, A:

P>> A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex - 1);

LAB 1 | LAB 2 LAB 3

1 2 ... 250 | 251 252 ... 500 | 501 502 ... 750 | etc.

251 252 ... 500 | 501 502 ... 750 | 751 752 ...1000 | etc.

501 502 ... 750 | 751 752 ...1000 | 1001 1002 ...1250 | etc.

751 752 ...1000 | 1001 1002 ...1250 | 1251 1252 ...1500 | etc.

| | |

Now combine these segments into an array that is distributed across the first
(or vertical) dimension. The array is now 16-by-250, with a 4-by-250 segment
residing on each lab:

P>> D = darray(A, 1)
1: local(D) is 4-by-250
2: local(D) is 4-by-250
3: local(D) is 4-by-250
4: local(D) is 4-by-250

P>> whos
Name Size Bytes Class

A 4x250 8000 double array
D 16x250 8396 distributedarray object

8-9

8 Parallel Math

You could also use replicated arrays in the same fashion, if you wanted to
create a distributed array whose segments were all identical to start with.
See the darray function reference page for syntax and usage information.

Using MATLAB Constructor Functions
MATLAB provides several array constructor functions that you can use to
build distributed arrays of specific values, sizes, and classes. These functions
operate in the same way as their nondistributed counterparts in the MATLAB
language, except that they distribute the resultant array across the labs using
the specified darray, dist.

Constructor Functions. The distributed constructor functions are listed here.
Use the dist argument (created by the darray function: dist=darray())
to specify over which dimension to distribute the array. See the individual
reference pages for these functions for further syntax and usage information.

cell(m, n, ..., dist)
eye(m, ..., classname, dist)
false(m, n, ..., dist)
Inf(m, n, ..., classname, dist)
NaN(m, n, ..., classname, dist)
ones(m, n, ..., classname, dist)
rand(m, n, ..., dist)
randn(m, n, ..., dist)
sparse(m, n, dist)
speye(m, ..., dist)
sprand(m, n, density, dist)
sprandn(m, n, density, dist)
true(m, n, ..., dist)
zeros(m, n, ..., classname, dist)

Local Arrays
That part of a distributed array that resides on each lab is a piece of a larger
array. Each lab can work on its own segment of the common array, or it can
make a copy of that segment in a variant or private array of its own. This
local copy of a distributed array segment is called a local array.

8-10

Working with Distributed Arrays

Creating Local Arrays from a Distributed Array
The local function copies the segments of a distributed array to a separate
variant array. This example makes a local copy L of each segment of
distributed array D. The size of L shows that it contains only the local part of D
for each lab. Suppose you distribute an array across four labs:

P>> A = [1:80; 81:160; 161:240];
P>> D = distribute(A, 2);

P>> size(D)
ans =

3 80

P>> L = local(D);
P>> size(L)
ans =

3 20

Each lab recognizes that the distributed array D is 3-by-80. However, notice
that the size of the local portion, L, is 3-by-20 on each lab, because the 80
columns of D are distributed over four labs.

Creating a Distributed from Local Arrays
Use the darray function to perform the reverse operation. This function,
described in “Building from Smaller Arrays” on page 8-9, combines the local
variant arrays into a single array distributed along the specified dimension.

Continuing the previous example, take the local variant arrays L and put
them together as segments of a new distributed array X.

P>> X = darray(L, 2);
P>> size(X)
ans =

3 80

Obtaining Information About the Array
MATLAB offers several functions that provide information on any particular
array. In addition to these standard functions, there are also two functions
that are useful solely with distributed arrays.

8-11

8 Parallel Math

Determining Whether an Array Is Distributed
The isdarray function returns a logical 1 (true) if the input array is
distributed, and logical 0 (false) otherwise. The syntax is

P>> TF = isdarray(D)

where D is any MATLAB array.

Determining the Dimension of Distribution
The distribdim function returns a number that represents the dimension
of distribution of a distributed array, and the partition function returns
a vector that describes how the array is partitioned along its dimension of
distribution.

The syntax is

P>> distribdim(D)
P>> partition(D)

where D is any distributed array. For a 250-by-10 matrix distributed across
four labs by columns,

P>> D = ones(250, 10, darray())
1: local(D) is 250-by-3
2: local(D) is 250-by-3
3: local(D) is 250-by-2
4: local(D) is 250-by-2

P>> dim = distribdim(D)
1: dim = 2

P>> part = partition(D)
1: part = [3 3 2 2]

The distribdim(D) return value of 2 means the array is distributed by
columns (dimension 2); and the partition(D) return value of [3 3 2 2]
means that the first three columns reside in the lab 1, the next three columns
in lab 2, the next two columns in lab 3, and the final two columns in lab 4.

8-12

Working with Distributed Arrays

Other Array Functions
Other functions that provide information about standard arrays also work on
distributed arrays and use the same syntax.

• ndims — Returns the number of dimensions.

• size — Returns the size of each dimension.

• length — Returns the length of a specific dimension.

• isa — Returns information about a number of array characteristics.

• is* — All functions that have names beginning with 'is', such as ischar
and issparse.

numel Not Supported on Distributed Arrays. For a distributed array, the
numel function does not return the number of elements, but instead always
returns a value of 1.

Changing the Dimension of Distribution
When constructing an array, you distribute the parts of the array along one of
the array’s dimensions. You can change the direction of this distribution on an
existing array using the redistribute function.

Construct an 8-by-16 distributed array D of random values having distributed
columns:

P>> D = rand(8, 16, darray());

P>> size(local(D))
ans =

8 4

Create a new array from this one that has distributed rows:

P>> X = redistribute(D, 1);

P>> size(local(X))
ans =

2 16

8-13

8 Parallel Math

Restoring the Full Array
You can restore a distributed array to its undistributed form using the gather
function. gather takes the segments of an array that reside on different
labs and combines them into a replicated array on all labs, or into a single
array on one lab.

Distribute a 4-by-10 array to four labs along the second dimension:

P>> A = [11:20; 21:30; 31:40; 41:50]
A =

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

P>> D = distribute(A, 2)
Lab 1 | Lab 2 | Lab 3 | Lab 4

11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40
41 42 43 | 44 45 46 | 47 48 | 49 50

| | |
P>> size(local(D))

1: ans =
1: 4 3
2: ans =
2: 4 3
3: ans =
3: 4 2
4: ans =
4: 4 2

Restore the undistributed segments to the full array form by gathering the
segments:

P>> X = gather(D)
X =

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

8-14

Working with Distributed Arrays

41 42 43 44 45 46 47 48 49 50

P>> size(X)
ans =

4 8

Indexing into a Distributed Array
While indexing into a nondistributed array is fairly straightforward,
distributed arrays require additional considerations. Each dimension of a
nondistributed array is indexed within a range of 1 to the final subscript,
which is represented in MATLAB by the end keyword. The length of any
dimension can be easily determined using either the size or length function.

With distributed arrays, these values are not so easily obtained. For example,
the second segment of an array (that which resides in the workspace of lab 2)
has a starting index that varies with each array. For a 200-by-1000 array that
has been distributed by columns over four labs, this starting index would be
251. For a 1000-by-200 array also distributed by columns, that same index
would be 51. As for the ending index, this is not given by using the end
keyword, as end in this case refers to the end of the entire array; that is,
the last subscript of the final segment. The length of each segment is also
not revealed by using the length or size functions, as they only return the
length of the entire array.

The MATLAB colon operator and end keyword are two of the basic tools
for indexing into nondistributed arrays. For distributed arrays, MATLAB
provides a distributed version of the colon operator, called dcolon. This
actually is a function, not a symbolic operator like colon.

Indexing Functions

dcolon. The dcolon function returns a distributed vector of length L
that maps the subscripts of an equivalent array residing on the same lab
configuration. An equivalent array is an array for which the distributed
dimension is also of length L. For example, the subscripts of a 50-element
dcolon vector are as follows:

[1:13] for Lab 1
[14:26] for Lab 2

8-15

8 Parallel Math

[27:38] for Lab 3
[39:50] for Lab 4

This vector shows how MATLAB would distribute 50 rows, columns, or any
dimension of an array in a configuration having the same number of labs
(four in this case). A 50-row, 10-column array, for example, with the rows
distributed over four labs

D = rand(50, 10, darray('1d',1))

will have rows 1 through 13 stored on lab 1, rows 14 through 26 on lab 2, rows
27 through 38 on lab 3, and rows 39 through 50 on lab 4.

The command syntax for dcolon is as follows. The step input argument is
optional:

P>> V = dcolon(first, step, last)

Inputs to dcolon are shown below. Each input must be a real scalar integer
value.

Input Argument Description

first Number of the first subscript in this dimension.

step Size of the interval between numbers in the generated
sequence. Optional; the default is 1.

last Number of the last subscript in this dimension.

To use dcolon to index into the 50-by-10 distributed array in the previous
example, first generate the vector V that shows how the 50-row dimension is
partitioned. Then you can use the elements of this vector to derive the range
of rows that apply to particular segments of the array.

8-16

Using a for-Loop Over a Distributed Range (for-drange)

Using a for-Loop Over a Distributed Range (for-drange)

In this section...

“Parallelizing a for-Loop” on page 8-17

“Distributed Arrays in a for-drange Loop” on page 8-18

Parallelizing a for-Loop
If you already have a coarse-grained application to perform, but you do not
want to bother with the overhead of defining jobs and tasks, you can take
advantage of the ease-of-use that the interactive parallel mode provides.
Where an existing program might take hours or days to process all its
independent data sets, you can shorten that time by distributing these
independent computations over your cluster.

For example, suppose you have the following serial code:

results = zeros(1, numDataSets);
for i = 1:numDataSets

load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(i);

end
plot(1:numDataSets, results);
save \\central\myResults\today.mat results

The following changes make this code operate in parallel, either interactively
in pmode or in a parallel job:

results = zeros(1, numDataSets, darray());
for i = drange(1:numDataSets)

load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(i);

end
res = gather(results, 1);
if labindex == 1

plot(1:numDataSets, res);
print -dtiff -r300 fig.tiff;
save \\central\myResults\today.mat res

end

8-17

8 Parallel Math

Note that the length of the for iteration and the length of the distributed
array results need to match in order to index into results within a for
drange loop. This way, no communication is required between the labs. If
results was simply a replicated array, as it would have been when running
the original code in parallel, each lab would have assigned into its part of
results, leaving the remaining parts of results 0. At the end, results would
have been a variant, and without explicitly calling labSend and labReceive
or gcat, there would be no way to get the total results back to one (or all) labs.

When using the load function, you need to be careful that the data files are
accessible to all labs if necessary. The best practice is to use explicit paths to
files on a shared file system.

Correspondingly, when using the save function, you should be careful to only
have one lab save to a particular file (on a shared file system) at a time. Thus,
wrapping the code in if labindex == 1 is recommended.

Because results is distributed across the labs, this example uses gather to
collect the data onto lab 1.

A lab cannot plot a visible figure, so the print function creates a viewable
file of the plot.

Distributed Arrays in a for-drange Loop
When a for loop over a distributed range is executed in a parallel job,
each lab performs its portion of the loop, so that the labs are all working
simultaneously. Because of this, no communication is allowed between the
labs while executing a for drange loop. In particular, a lab has access only
to its partition of a distributed array. Any calculations in such a loop that
require a lab to access portions of a distributed array from another lab will
generate an error.

To illustrate this characteristic, you can try the following example, in which
one for loop works, but the other does not.

At the pmode prompt, create two distributed arrays, one an identity matrix,
the other set to zeros, distributed across four labs.

D = eye(8,8,darray())

8-18

Using a for-Loop Over a Distributed Range (for-drange)

E = zeros(8,8,darray())

By default, these arrays are distributed by columns; that is, each of the four
labs contains two columns of each array. If you use these arrays in a for
drange loop, any calculations must be self-contained within each lab. In other
words, you can only perform calculations that are limited within each lab to
the two columns of the arrays that the labs contain.

For example, suppose you want to set each column of array E to some multiple
of the corresponding column of array D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j); end

This statement sets the j-th column of E to j times the j-th column of D. In
effect, while D is an identity matrix with 1s down the main diagonal, E has
the sequence 1, 2, 3, etc. down its main diagonal.

This works because each lab has access to the entire column of D and the
entire column of E necessary to perform the calculation, as each lab works
independently and simultaneously on 2 of the 8 columns.

Suppose, however, that you attempt to set the values of the columns of E
according to different columns of D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j+1); end

This method fails, because when j is 2, you are trying to set the second
column of E using the third column of D. These columns are stored in different
labs, so an error occurs, indicating that communication between the labs is
not allowed.

8-19

8 Parallel Math

Using MATLAB Functions on Distributed Arrays
Many functions in MATLAB are enhanced so that they operate on distributed
arrays in much the same way that they operate on arrays contained in a
single workspace.

A few of these functions might exhibit certain limitations when operating on
a distributed array. To see if any function has different behavior when used
with a distributed array, type

help darray/function_name

For example,

help darray/normest

The following table lists the enhanced MATLAB functions that operate on
distributed arrays:

Type of Function Function Names

Data functions cumprod, cumsum, fft, max, min, prod, sum

Data type functions cast, cell2mat, cell2struct, celldisp, cellfun,
char, double, fieldnames, int16, int32, int64,
int8, logical, num2cell, rmfield, single,
struct2cell, swapbytes, typecast, uint16,
uint32, uint64, uint8

Elementary and
trigonometric
functions

abs, acos, acosd, acosh, acot, acotd, acoth,
acsc, acscd, acsch, angle, asec, asecd, asech,
asin, asind, asinh, atan, atan2, atand, atanh,
ceil, complex, conj, cos, cosd, cosh, cot, cotd,
coth, csc, cscd, csch, exp, expm1, fix, floor,
hypot, imag, isreal, log, log10, log1p, log2, mod,
nextpow2, nthroot, pow2, real, reallog, realpow,
realsqrt, rem, round, sec, secd, sech, sign, sin,
sind, sinh, sqrt, tan, tand, tanh

Elementary matrices cat, diag, eps, find, isempty, isequal,
isequalwithequalnans, isfinite, isinf, isnan,
length, ndims, size, tril, triu

8-20

Using MATLAB Functions on Distributed Arrays

Type of Function Function Names

Matrix functions chol, eig, lu, norm, normest, svd

Array operations all, and, any, bitand, bitor, bitxor, ctranspose,
end, eq, ge, gt, horzcat, ldivide, le, lt, minus,
mldivide, mrdivide, mtimes, ne, not, or, plus,
power, rdivide, subsasgn, subsindex, subsref,
times, transpose, uminus, uplus, vertcat, xor

Sparse matrix
functions

full, issparse, nnz, nonzeros, nzmax, sparse,
spfun, spones

Special functions dot

8-21

8 Parallel Math

8-22

9

Objects — By Category

Scheduler Objects (p. 9-2) Representing job manager, local
scheduler, or third-party scheduler

Job Objects (p. 9-2) Representing different types of jobs

Task Objects (p. 9-3) Representing different types of tasks

Worker Objects (p. 9-3) Representing MATLAB worker
sessions

9 Objects — By Category

Scheduler Objects

ccsscheduler Access Windows Compute Cluster
Server scheduler

genericscheduler Access generic scheduler

jobmanager Control job queue and execution

localscheduler Access local scheduler on client
machine

lsfscheduler Access Platform LSF scheduler

mpiexec Directly access mpiexec for job
distribution

Job Objects

job Define job behavior and properties
when using job manager

paralleljob Define parallel job behavior and
properties when using job manager

simplejob Define job behavior and properties
when using local or third-party
scheduler

simpleparalleljob Define parallel job behavior and
properties when using local or
third-party scheduler

9-2

Task Objects

Task Objects

simpletask Define task behavior and properties
when using third-party scheduler

task Define task behavior and properties
when using job manager

Worker Objects

worker Access information about MATLAB
worker session

9-3

9 Objects — By Category

9-4

10

Objects — Alphabetical List

ccsscheduler

Purpose Access Windows Compute Cluster Server scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A ccsscheduler object provides access to your network’s Windows
Compute Cluster Server scheduler, which controls the job queue, and
distributes job tasks to workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

10-2

ccsscheduler

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

SchedulerHostname Name of host running CCS
scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also genericscheduler, jobmanager, lsfscheduler, mpiexec

10-3

genericscheduler

Purpose Access generic scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A genericscheduler object provides access to your network’s scheduler,
which distributes job tasks to workers or labs for execution. The generic
scheduler interface requires use of the M-code submit function on the
client and the M-code decode function on the worker node.

Methods createJob Create job object in scheduler and
client

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

10-4

genericscheduler

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MatlabCommandToRun MATLAB command that generic
scheduler runs to start lab

ParallelSubmitFcn Specify function to run when
parallel job submitted to generic
scheduler

SubmitFcn Specify function to run when job
submitted to generic scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, jobmanager, lsfscheduler, mpiexec

10-5

job

Purpose Define job behavior and properties when using job manager

Constructor createJob

Container
Hierarchy

Parent jobmanager object

Children task objects

Description A job object contains all the tasks that define what each worker does
as part of the complete job execution. A job object is used only with a
job manager as scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

submit Queue job in scheduler

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

10-6

job

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify M-file function to execute
when job is submitted to job
manager queue

RestartWorker Specify whether to restart
MATLAB workers before
evaluating job tasks

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

10-7

job

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job

See Also paralleljob, simplejob, simpleparalleljob

10-8

jobmanager

Purpose Control job queue and execution

Constructor findResource

Container
Hierarchy

Parent None

Children job, paralleljob, and worker objects

Description A jobmanager object provides access to the job manager, which controls
the job queue, distributes job tasks to workers or labs for execution, and
maintains job results. The job manager is provided with the MDCE
product, and its use as a scheduler is optional.

Methods createJob Create job object in scheduler and
client

createParallelJob Create parallel job object

demote Demote job in job manager queue

findJob Find job objects stored in
scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job
manager

Properties BusyWorkers Workers currently running tasks

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

10-9

jobmanager

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

HostAddress IP address of host running job
manager or worker session

HostName Name of host running job
manager or worker session

IdleWorkers Idle workers available to run
tasks

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Name Name of job manager, job, or
worker object

NumberOfBusyWorkers Number of workers currently
running tasks

NumberOfIdleWorkers Number of idle workers available
to run tasks

State Current state of task, job, job
manager, or worker

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, genericscheduler, lsfscheduler, mpiexec

10-10

localscheduler

Purpose Access local scheduler on client machine

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A localscheduler object provides access to your client machine’s local
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution on the client machine.

Methods createJob Create job object in scheduler and
client

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

10-11

localscheduler

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Type Type of scheduler object

UserData Specify data to associate with
object

See Also jobmanager

10-12

lsfscheduler

Purpose Access Platform LSF scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description An lsfscheduler object provides access to your network’s Platform LSF
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

setupForParallelExecution Set options for submitting
parallel jobs on LSF

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of LSF cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

10-13

lsfscheduler

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MasterName Name of LSF master node

ParallelSubmission-
WrapperScript

Script LSF scheduler runs to
start labs

SubmitArguments Specify additional arguments to
use when submitting job to LSF
or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, genericscheduler, jobmanager, mpiexec

10-14

mpiexec

Purpose Directly access mpiexec for job distribution

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description An mpiexec object provides direct access to the mpiexec executable for
distribution of a job’s tasks to workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

10-15

mpiexec

DataLocation Specify directory where job data
is stored

EnvironmentSetMethod Specify means of setting
environment variables for
mpiexec scheduler

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MpiexecFileName Specify pathname of executable
mpiexec command

SubmitArguments Specify additional arguments to
use when submitting job to LSF
or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

WorkerMachineOsType Specify operating system of nodes
on which mpiexec scheduler will
start labs

See Also ccsscheduler, genericscheduler, jobmanager, lsfscheduler

10-16

paralleljob

Purpose Define parallel job behavior and properties when using job manager

Constructor createParallelJob

Container
Hierarchy

Parent jobmanager object

Children task objects

Description A paralleljob object contains all the tasks that define what each
lab does as part of the complete job execution. A parallel job runs
simultaneously on all labs and uses communication among the labs
during task evaluation. A paralleljob object is used only with a job
manager as scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

submit Queue job in scheduler

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

10-17

paralleljob

FileDependencies Directories and files that worker
can access

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify M-file function to execute
when job is submitted to job
manager queue

RestartWorker Specify whether to restart
MATLAB workers before
evaluating job tasks

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

10-18

paralleljob

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job

See Also job, simplejob, simpleparalleljob

10-19

simplejob

Purpose Define job behavior and properties when using local or third-party
scheduler

Constructor createJob

Container
Hierarchy

Parent localscheduler, ccsscheduler, genericscheduler,
lsfscheduler, or mpiexec object

Children simpletask objects

Description A simplejob object contains all the tasks that define what each worker
does as part of the complete job execution. A simplejob object is used
only with a local or third-party scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

submit Queue job in scheduler

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

10-20

simplejob

FileDependencies Directories and files that worker
can access

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

UserData Specify data to associate with
object

UserName User who created job

See Also job, paralleljob, simpleparalleljob

10-21

simpleparalleljob

Purpose Define parallel job behavior and properties when using local or
third-party scheduler

Constructor createParallelJob

Container
Hierarchy

Parent localscheduler, ccsscheduler, genericscheduler,
lsfscheduler, or mpiexec object

Children task objects

Description A simpleparalleljob object contains all the tasks that define what each
lab does as part of the complete job execution. A parallel job runs
simultaneously on all labs and uses communication among the labs
during task evaluation. A simpleparalleljob object is used only with
a local or third-party scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

submit Queue job in scheduler

waitForState Wait for object to change state

10-22

simpleparalleljob

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

UserData Specify data to associate with
object

UserName User who created job

10-23

simpleparalleljob

See Also job, paralleljob, simplejob

10-24

simpletask

Purpose Define task behavior and properties when using third-party scheduler

Constructor createTask

Container
Hierarchy

Parent simplejob object

Children None

Description A simpletask object defines what each lab or worker does as part of the
complete job execution. A simpletask object is used only with a local
or third-party scheduler.

Methods cancel Cancel job or task

destroy Remove job or task object from
parent and memory

waitForState Wait for object to change state

Properties CaptureCommandWindowOutput Specify whether to return
Command Window output

CommandWindowOutput Text produced by execution of
task object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

Error Task error information

ErrorIdentifier Task error identifier

ErrorMessage Message from task error

FinishTime When task or job finished

10-25

simpletask

Function Function called when evaluating
task

ID Object identifier

InputArguments Input arguments to task object

Name Name of job manager, job, or
worker object

NumberOfOutputArguments Number of arguments returned
by task function

OutputArguments Data returned from execution of
task

Parent Parent object of job or task

StartTime When job or task started

State Current state of task, job, job
manager, or worker

UserData Specify data to associate with
object

See Also task

10-26

task

Purpose Define task behavior and properties when using job manager

Constructor createTask

Container
Hierarchy

Parent job object

Children None

Description A task object defines what each lab or worker does as part of the
complete job execution. A task object is used only with a job manager
as scheduler.

Methods cancel Cancel job or task

destroy Remove job or task object from
parent and memory

waitForState Wait for object to change state

Properties CaptureCommandWindowOutput Specify whether to return
Command Window output

CommandWindowOutput Text produced by execution of
task object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

Error Task error information

ErrorIdentifier Task error identifier

ErrorMessage Message from task error

10-27

task

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

Function Function called when evaluating
task

ID Object identifier

InputArguments Input arguments to task object

NumberOfOutputArguments Number of arguments returned
by task function

OutputArguments Data returned from execution of
task

Parent Parent object of job or task

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

Worker Worker session that performed
task

See Also simpletask

10-28

worker

Purpose Access information about MATLAB worker session

Constructor getCurrentWorker

Container
Hierarchy

Parent jobmanager object

Children None

Description A worker object represents the MATLAB worker session that evaluates
tasks in a job distributed by a job manager. Only worker sessions started
with the startworker script can be represented by a worker object.

Methods None

Properties CurrentJob Job whose task this worker
session is currently evaluating

CurrentTask Task that worker is currently
running

HostAddress IP address of host running job
manager or worker session

HostName Name of host running job
manager or worker session

JobManager Job manager that this worker is
registered with

Name Name of job manager, job, or
worker object

PreviousJob Job whose task this worker
previously ran

10-29

worker

PreviousTask Task that this worker previously
ran

State Current state of task, job, job
manager, or worker

See Also jobmanager, simpletask, task

10-30

11

Functions — By Category

General Toolbox Functions (p. 11-2) Toolbox functions not specific to
particular object type

Job Manager Functions (p. 11-3) Operate on job manager object

Scheduler Functions (p. 11-3) Operate on various schedulers

Job Functions (p. 11-4) Operate on job object

Task Functions (p. 11-4) Operate on task object

Toolbox Functions Used in Parallel
Jobs and pmode (p. 11-5)

Execute within parallel job code

Toolbox Functions Used in MATLAB
Workers (p. 11-7)

Execute within MATLAB worker
session

11 Functions — By Category

General Toolbox Functions
clear Remove objects from MATLAB

workspace

dctconfig Configure settings for Distributed
Computing Toolbox client session

dctRunOnAll Run command on client and all
workers in matlabpool

defaultParallelConfig Default parallel computing
configuration

dfeval Evaluate function using cluster

dfevalasync Evaluate function asynchronously
using cluster

findResource Find available distributed computing
resources

get Object properties

help Help for toolbox functions in
Command Window

inspect Open Property Inspector

jobStartup M-file for user-defined options to run
when job starts

length Length of object array

matlabpool Start parallel language worker pool

methods List functions of object class

parfor Execute block of code in parallel

pmode Interactive parallel mode

set Configure or display object properties

size Size of object array

11-2

Job Manager Functions

taskFinish M-file for user-defined options to run
when task finishes

taskStartup M-file for user-defined options to run
when task starts

Job Manager Functions
createJob Create job object in scheduler and

client

createParallelJob Create parallel job object

demote Demote job in job manager queue

findJob Find job objects stored in scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job
manager

Scheduler Functions
createJob Create job object in scheduler and

client

createParallelJob Create parallel job object

findJob Find job objects stored in scheduler

getDebugLog Read output messages from job run
by supported third-party or local
scheduler

mpiLibConf Location of MPI implementation

11-3

11 Functions — By Category

mpiSettings Configure options for MPI
communication

setupForParallelExecution Set options for submitting parallel
jobs on LSF

Job Functions
cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

findTask Task objects belonging to job object

getAllOutputArguments Output arguments from evaluation
of all tasks in job object

submit Queue job in scheduler

waitForState Wait for object to change state

Task Functions
cancel Cancel job or task

destroy Remove job or task object from
parent and memory

waitForState Wait for object to change state

11-4

Toolbox Functions Used in Parallel Jobs and pmode

Toolbox Functions Used in Parallel Jobs and pmode
cell Create distributed cell array

darray Create distributed array from local
data

dcolon Distributed colon operation

dcolonpartition Default partition for distributed
array

distribdim Distributed dimension of distributed
array

distribute Distribute replicated array

eye Create distributed identity matrix

false Create distributed false array

for For-loop over distributed range

gather Convert distributed array into
replicated array

gcat Global concatenation

gop Global operation across all labs

gplus Global addition

Inf Create distributed array of Inf
values

isdarray True for distributed array

isreplicated True for replicated array

labBarrier Block execution until all labs reach
this call

labBroadcast Send data to all labs or receive data
sent to all labs

labindex Index of this lab

labProbe Test to see if messages are ready to
be received from other lab

11-5

11 Functions — By Category

labReceive Receive data from another lab

labSend Send data to another lab

labSendReceive Simultaneously send data to and
receive data from another lab

local Local portion of distributed array

localspan Index range of local segment of
distributed array

mpiprofile Profile parallel communication and
execution times

NaN Create distributed array of NaN
values

numlabs Total number of labs operating in
parallel on current job

ones Create distributed array of 1s

partition Partition of distributed array

pload Load file into parallel session

psave Save data from parallel job session

rand Create distributed array of uniformly
distributed pseudo-random numbers

randn Create distributed array of normally
distributed random values

redistribute Distribute array along different
dimension

sparse Create distributed sparse matrix

speye Create distributed sparse identity
matrix

sprand Create distributed sparse
array of uniformly distributed
pseudo-random values

sprandn Create distributed sparse array of
normally distributed random values

11-6

Toolbox Functions Used in MATLAB Workers

true Create distributed true array

zeros Create distributed array of 0s

Toolbox Functions Used in MATLAB Workers
getCurrentJob Job object whose task is currently

being evaluated

getCurrentJobmanager Job manager object that distributed
current task

getCurrentTask Task object currently being
evaluated in this worker session

getCurrentWorker Worker object currently running this
session

getFileDependencyDir Directory where FileDependencies
are written on worker machine

11-7

11 Functions — By Category

11-8

12

Functions — Alphabetical
List

cancel

Purpose Cancel job or task

Syntax cancel(t)
cancel(j)

Arguments t Pending or running task to cancel.

j Pending, running, or queued job to cancel.

Description cancel(t) stops the task object, t, that is currently in the pending or
running state. The task’s State property is set to finished, and no
output arguments are returned. An error message stating that the task
was canceled is placed in the task object’s ErrorMessage property, and
the worker session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running.
The job’s State property is set to finished, and a cancel is executed
on all tasks in the job that are not in the finished state. A job object
that has been canceled cannot be started again.

If the job is running in a job manager, any worker sessions that are
evaluating tasks belonging to the job object will be restarted.

Examples Cancel a task. Note afterward the task’s State, ErrorMessage, and
OutputArguments properties.

job1 = createJob(jm);

t = createTask(job1, @rand, 1, {3,3});

cancel(t)

get(t)

ID: 1

Function: @rand

NumberOfOutputArguments: 1

InputArguments: {[3] [3]}

OutputArguments: {1x0 cell}

CaptureCommandWindowOutput: 0

CommandWindowOutput: ''

12-2

cancel

State: 'finished'

ErrorMessage: 'Task cancelled by user'

ErrorIdentifier: 'distcomp:task:Cancelled'

Timeout: Inf

CreateTime: 'Fri Oct 22 11:38:39 EDT 2004'

StartTime: 'Fri Oct 22 11:38:46 EDT 2004'

FinishTime: 'Fri Oct 22 11:38:46 EDT 2004'

Worker: []

Parent: [1x1 distcomp.job]

UserData: []

RunningFcn: []

FinishedFcn: []

See Also destroy, submit

12-3

cell

Purpose Create distributed cell array

Syntax D = cell(n, dist)
D = cell(m, n, p, ..., dist)
D = cell([m, n, p, ...], dist)

Description D = cell(n, dist) creates an n-by-n distributed array of
underlying class cell. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, D is distributed by its second
dimension. If PAR is unspecified, then D uses dcolonpartition(n) as its
partition. The easiest way to do this is to use a default distributor where
both dim and PAR are unspecified (dist = darray()) as input to cell.

D = cell(m, n, p, ..., dist) and D = cell([m, n, p, ...],
dist) create an m-by-n-by-p-by-... distributed array of underlying class
cell. The distribution dimension dim and partition PAR can be specified
by dist as above, but if they are not specified, dim is taken to be the last
nonsingleton dimension of D, and PAR is provided by dcolonpartition
over the size in that dimension.

Examples With four labs,

D = cell(1000,darray())

creates a 1000-by-1000 distributed cell array D, distributed by its second
dimension (columns). Each lab contains a 1000-by-250 local piece of D.

D = cell(10, 10, darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed cell array D, distributed by its columns.
Each lab contains a 10-by-labindex local piece of D.

See Also cell MATLAB function reference page

eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

12-4

clear

Purpose Remove objects from MATLAB workspace

Syntax clear obj

Arguments obj An object or an array of objects.

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj references an object in the job manager, it is cleared from the
workspace, but it remains in the job manager. You can restore obj to
the workspace with the findResource, findJob, or findTask function;
or with the Jobs or Tasks property.

Examples This example creates two job objects on the job manager jm. The
variables for these job objects in the MATLAB workspace are job1 and
job2. job1 is copied to a new variable, job1copy; then job1 and job2
are cleared from the MATLAB workspace. The job objects are then
restored to the workspace from the job object’s Jobs property as j1
and j2, and the first job in the job manager is shown to be identical to
job1copy, while the second job is not.

job1 = createJob(jm);
job2 = createJob(jm);
job1copy = job1;
clear job1 job2;
j1 = jm.Jobs(1);
j2 = jm.Jobs(2);
isequal (job1copy, j1)
ans =

1
isequal (job1copy, j2)
ans =

0

See Also createJob, createTask, findJob, findResource, findTask

12-5

createJob

Purpose Create job object in scheduler and client

Syntax obj = createJob(scheduler)
obj = createJob(..., 'p1', v1, 'p2', v2, ...)
obj = createJob(..., 'configuration', 'ConfigurationName',

...)

Arguments obj The job object.

scheduler The job manager object representing the job
manager service that will execute the job, or the
scheduler object representing the scheduler on the
cluster that will distribute the job.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description obj = createJob(scheduler) creates a job object at the data location
for the identified scheduler, or in the job manager.

obj = createJob(..., 'p1', v1, 'p2', v2, ...) creates a job
object with the specified property values. If an invalid property name or
property value is specified, the object will not be created.

Note that the property value pairs can be in any format supported by the
set function, i.e., param-value string pairs, structures, and param-value
cell array pairs. If a structure is used, the structure field names are job
object property names and the field values specify the property values.

If you are using a third-party scheduler instead of a job manager,
the job’s data is stored in the location specified by the scheduler’s
DataLocation property.

obj = createJob(..., 'configuration', 'ConfigurationName',
...) creates a job object with the property values specified in the
configuration ConfigurationName. For details about defining and
applying configurations, see “Programming with User Configurations”
on page 2-6.

12-6

createJob

Examples Construct a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

obj = createJob(jm, 'Name', 'testjob');

Add tasks to the job.

for i = 1:10
createTask(obj, @rand, 1, {10});

end

Run the job.

submit(obj);

Retrieve job results.

out = getAllOutputArguments(obj);

Display the random matrix returned from the third task.

disp(out{3});

Destroy the job.

destroy(obj);

See Also createParallelJob, createTask, findJob, findResource, submit

12-7

createParallelJob

Purpose Create parallel job object

Syntax pjob = createParallelJob(scheduler)
pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
pjob = createParallelJob(..., 'configuration',

'ConfigurationName',...)

Arguments pjob The parallel job object.

scheduler The scheduler object created by findResource,
using either a job manager or mpiexec scheduler.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description pjob = createParallelJob(scheduler) creates a parallel job object
at the data location for the identified scheduler, or in the job manager.
Future modifications to the job object result in a remote call to the job
manager or modification to data at the scheduler’s data location.

pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
creates a parallel job object with the specified property values. If an
invalid property name or property value is specified, the object will
not be created.

Property value pairs can be in any format supported by the set function,
i.e., param-value string pairs, structures, and param-value cell array
pairs.

pjob = createParallelJob(..., 'configuration',
'ConfigurationName',...) creates a parallel job object with the
property values specified in the configuration ConfigurationName. For
details about defining and applying configurations, see “Programming
with User Configurations” on page 2-6.

12-8

createParallelJob

Examples Construct a parallel job object in a job manager queue.

jm = findResource('scheduler','type','jobmanager');
pjob = createParallelJob(jm,'Name','testparalleljob');

Add the task to the job.

createTask(pjob, 'rand', 1, {3});

Set the number of workers required for parallel execution.

set(pjob,'MinimumNumberOfWorkers',3);
set(pjob,'MaximumNumberOfWorkers',3);

Run the job.

submit(pjob);

Retrieve job results.

waitForState(pjob);
out = getAllOutputArguments(pjob);

Display the random matrices.

celldisp(out);
out{1} =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

out{2} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

out{3} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

12-9

createParallelJob

Destroy the job.

destroy(pjob);

See Also createJob, createTask, findJob, findResource, submit

12-10

createTask

Purpose Create new task in job

Syntax t = createTask(j, F, N, {inputargs})
t = createTask(j, F, N, {C1,...,Cm})
t = createTask(..., 'p1',v1,'p2',v2,...)
t = createTask(...,'configuration', 'ConfigurationName',...)

Arguments t Task object or vector of task objects.

j The job that the task object is created in.

F A handle to the function that is called when
the task is evaluated, or an array of function
handles.

N The number of output arguments to be
returned from execution of the task function.
This is a double or array of doubles.

{inputargs} A row cell array specifying the input
arguments to be passed to the function F.
Each element in the cell array will be passed
as a separate input argument. If this is a cell
array of cell arrays, a task is created for each
cell array.

{C1,...,Cm} Cell array of cell arrays defining input
arguments to each of m tasks.

p1, p2 Task object properties configured at object
creation.

v1, v2 Initial values for corresponding task object
properties.

Description t = createTask(j, F, N, {inputargs}) creates a new task object
in job j, and returns a reference, t, to the added task object. This
task evaluates the function specified by a function handle or function

12-11

createTask

name F, with the given input arguments {inputargs}, returning N
output arguments.

t = createTask(j, F, N, {C1,...,Cm}) uses a cell array of m cell
arrays to create m task objects in job j, and returns a vector, t, of
references to the new task objects. Each task evaluates the function
specified by a function handle or function name F. The cell array C1
provides the input arguments to the first task, C2 to the second task,
and so on, so that there is one task per cell array. Each task returns
N output arguments. If F is a cell array, each element of F specifies
a function for each task in the vector; it must have m elements. If N
is an array of doubles, each element specifies the number of output
arguments for each task in the vector. Multidimensional matrices of
inputs F, N and {C1,...,Cm} are supported; if a cell array is used for F,
or a double array for N, its dimensions must match those of the input
arguments cell array of cell arrays. The output t will be a vector with
the same number of elements as {C1,...,Cm}.

t = createTask(..., 'p1',v1,'p2',v2,...) adds a task object with
the specified property values. If an invalid property name or property
value is specified, the object will not be created.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are task object property names and the field values specify the
property values.

t = createTask(...,'configuration', 'ConfigurationName',...)
creates a task job object with the property values specified in the
configuration ConfigurationName. For details about defining and
applying configurations, see “Programming with User Configurations”
on page 2-6.

Examples Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);

12-12

createTask

Add a task object which generates a 10-by-10 random matrix.

obj = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Get the output from the task evaluation.

taskoutput = get(obj, 'OutputArguments');

Show the 10-by-10 random matrix.

disp(taskoutput{1});

Create a job with three tasks, each of which generates a 10-by-10
random matrix.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {{10,10} {10,10} {10,10}});

See Also createJob, createParallelJob, findTask

12-13

darray

Purpose Create distributed array from local data

Syntax A = darray()
A = darray('1d')
A = darray('1d', dim)
A = darray('1d', dim, part)
A = darray('2d')
A = darray('2d', lbgrid)
A = darray('2d', lbgrid, blksize)
A = darray(L)
A = darray(L, '1d')
A = darray(L, dim)
A = darray(L, D)
A = darray(L, dim, part)
A = darray(L, '1d', dim, part)
A = darray(L, '2d')
A = darray(L, '2d', lbgrid)
A = darray(L, '2d', lbgrid, blksize)
A = darray(L, '2d', lbgrid, blksize, siz)

Description There are two schemes for distributing arrays. The scheme denoted by
the string '1d' distributes an array along a single specified subscript,
the distribution dimension, in a noncyclic, partitioned manner. The
scheme denoted by '2d', employed by the parallel matrix computation
software ScaLAPACK, applies only to two-dimensional arrays, and
varies both subscripts over a rectangular computational grid of labs in
a blocked, cyclic manner.

A = darray(), with no arguments, returns a primitive distributed
array with zero-valued or empty parameters, which can then be used
as an argument to other darray functions to indicate that the function
is to create a distributed array. For example,

zeros(..., darray())
randn(..., darray())

A = darray('1d') is the same as A = darray().

12-14

darray

A = darray('1d', dim) also forms a primitive distributed array with
distribdim(A) = dim and partition(A) = dcolonpartition.

A = darray('1d', dim, part) also forms a primitive distributed
array with distribdim(A) = dim and partition(A) = part.

A = darray('2d') forms a primitive '2d' distributed array.

A = darray('2d', lbgrid) forms a primitive '2d' distributed
array with labgrid(A) = lbgrid and blocksize(A) =
defaultblocksize(numlabs).

A = darray('2d', lbgrid, blksize) forms a primitive '2d'
distributed array with labgrid(A) = lbgrid and blocksize(A) =
blksize.

A = darray(L) forms a '1d' distributed array with local(A) = L.
The darray A is created as if you had concatenated the L from all the
labs together. The distribution scheme of A is derived from the sizes
of the L arrays.

A = darray(L, '1d') is the same as A = darray(L).

A = darray(L, dim) forms a '1d' distributed array with
distribdim(A) = dim. szl = size(L) must be the same on all labs,
except possibly for szl(dim). Communication between labs is required
to determine overall size and partition. dim might be larger than
gop(@max, ndims(L)).

A = darray(L, D) forms a distributed array with the same distribution
scheme as the darray D.

A = darray(L, dim, part) forms a '1d' distributed array with
local(A) = L, distribdim(A) = dim and partition(A) = part. szl
= size(L) must be the same on all labs, except for szl(dim) which
must equal part(labindex). No communication is required between
labs to achieve this.

A = darray(L, '1d', dim, part) is the same as A =
darray(L,dim,part).

12-15

darray

A = darray(L, '2d') forms a '2d' distributed array with local(A)
= L, labgrid(A) = defaultlabgrid(numlabs), and blocksize(A) =
defaultblocksize(numlabs). Communication is required between the
labs to determine size(A).

A = darray(L, '2d', lbgrid) forms a '2d' distributed array
with local(A) = L, labgrid(A) = lbgrid, blocksize(A) =
defaultblocksize(numlabs). Communication is required between the
labs to determine size(A).

A = darray(L, '2d', lbgrid, blksize) forms a '2d' distributed
array with local(A) = L, labgrid(A) = lbgrid, blocksize(A) =
blksize. Communication is required between the labs to determine
size(A).

A = darray(L, '2d', lbgrid, blksize, siz) forms a '2d'
distributed array with local(A) = L, labgrid(A) = lbgrid,
blocksize(A) = blksize, and size(A) = siz. No communication is
required between the labs to achieve this.

Examples Create a 3-dimensional array with distribution dimension 2 and
partition [1 2 1 2 ...].

if mod(labindex, 2)
L = rand(2,1,4)

else
L = rand(2,2,4)

end
A = darray(L)

On 4 labs, create a 20-by-5 array A distributed by rows (over its first
dimension) with an even partition.

L = magic(5) + labindex;
dim = 1;
A = darray(L, dim);

The second dim input to darray is required here to override the default
distribution dimension.

12-16

darray

See Also distribdim, distribute, local, partition, redistribute

12-17

dcolon

Purpose Distributed colon operation

Syntax dcolon(a,d,b)
dcolon(a,b)

Description dcolon is the basis for parallel for-loops and the default distribution of
distributed arrays.

dcolon(a,d,b) partitions the vector a:d:b into numlabs contiguous
subvectors of equal, or nearly equal length, and creates a distributed
array whose local portion on each lab is the labindex-th subvector.

dcolon(a,b) uses d = 1.

Examples Partition the vector 1:10 into four subvectors among four labs.

P>> C=dcolon(1,10)
1: 1: local(C) =
1: 1 2 3
2: 2: local(C) =
2: 4 5 6
3: 3: local(C) =
3: 7 8
4: 4: local(C) =
4: 9 10

See Also colon MATLAB function reference page

darray, dcolonpartition, localspan, for, partition

12-18

dcolonpartition

Purpose Default partition for distributed array

Syntax P = dcolonpartition(n)

Description P = dcolonpartition(n) is a vector with sum(P) = n and length(P)
= numlabs. The first rem(n,numlabs) elements of P are equal
to ceil(n/numlabs) and the remaining elements are equal to
floor(n/numlabs). This function is the basis for the default
distribution of distributed arrays.

Examples If numlabs = 4,

P>> P = dcolonpartition(10)
1: P =
1: 3 3 2 2
2: P =
2: 3 3 2 2
3: P =
3: 3 3 2 2
4: P =
4: 3 3 2 2

See Also darray, dcolon, distribute, localspan, partition

12-19

dctconfig

Purpose Configure settings for Distributed Computing Toolbox client session

Syntax dctconfig('p1', v1, ...)
config = dctconfig('p1', v1, ...)
config = dctconfig()

Arguments p1 Property to configure. Supported properties are
'port', 'hostname', and 'pmodeport'.

v1 Value for corresponding property.

config Structure of configuration value.

Description dctconfig('p1', v1, ...) sets the client configuration property p1
with the value v1.

Note that the property value pairs can be in any format supported by the
set function, i.e., param-value string pairs, structures, and param-value
cell array pairs. If a structure is used, the structure field names are the
property names and the field values specify the property values.

If the property is 'port', the specified value is used to set the port for
the client session of Distributed Computing Toolbox. This is useful
in environments where the choice of ports is limited. By default, the
client session searches for an available port to communicate with the
other sessions of MATLAB Distributed Computing Engine. In networks
where you are required to use specific ports, you use dctconfig to set
the client’s port.

If the property is 'hostname', the specified value is used to set the
hostname for the client session of Distributed Computing Toolbox.
This is useful when the client computer is known by more than one
hostname. The value you should use is the hostname by which the
cluster nodes can contact the client computer. The toolbox supports both
short hostnames and fully qualified domain names.

If the property is 'pmodeport', the specified value is used to set the
port for communications with the labs in a pmode session.

12-20

dctconfig

config = dctconfig('p1', v1, ...) returns a structure to config.
The field names of the structure reflect the property names, while the
field values are set to the property values.

config = dctconfig(), without any input arguments, returns all the
current values as a structure to config. If you have not set any values,
these are the defaults.

Examples View the current settings for hostname and ports.

config = dctconfig()
config =

port: 27370
hostname: 'machine32'

pmodeport: 27371

Set the current client session port number to 21000 with hostname fdm4.

dctconfig('hostname', 'fdm4', 'port', 21000');

Set the client hostname to a fully qualified domain name.

dctconfig('hostname', 'desktop24.subnet6.mathworks.com');

12-21

dctRunOnAll

Purpose Run command on client and all workers in matlabpool

Syntax dctRunOnAll command

Description dctRunOnAll command runs the specified command on all the workers
of the matlabpool as well as the client, and prints any command-line
output back to the client Command Window. The specified command
runs in the base workspace of the workers and does not have any return
variables. This is useful if there are setup changes that need to be
performed on all the labs and the client.

Note If you use dctRunOnAll to run a command such as addpath in a
mixed-platform environment, it can generate a warning on the client
while executing properly on the labs. For example, if your labs are
all running Linux and your client is running Windows, an addpath
argument with Linux-style paths will warn on the Windows client.

Examples Clear all loaded functions on all labs:

dctRunOnAll clear functions

Change the directory on all workers to the project directory:

dctRunOnAll cd /opt/projects/c1456

Add some directories to the paths of all the labs:

dctRunOnAll addpath({'/usr/share/path1' '/usr/share/path2'})

See Also matlabpool

12-22

defaultParallelConfig

Purpose Default parallel computing configuration

Syntax [config, allconfigs] = defaultParallelConfig
[oldconfig, allconfigs] = defaultParallelConfig(newconfig)

Arguments config String indicating name of current default
configuration

allconfigs Cell array of strings indicating names of all
available configurations

oldconfig String indicating name of previous default
configuration

newconfig String specifying name of new default
configuration

Description The defaultParallelConfig function allows you to programmatically
get or set the default parallel configuration and obtain a list of all valid
configurations.

[config, allconfigs] = defaultParallelConfig returns the name
of the default parallel computing configuration, as well as a cell array
containing the names of all available configurations.

[oldconfig, allconfigs] = defaultParallelConfig(newconfig)
sets the default parallel computing configuration to be newconfig and
returns the previous default configuration and a cell array containing
the names of all available configurations. The previous configuration is
provided so that you can reset the default configuration to its original
setting at the end of your session.

Note that the settings specified for defaultParallelConfig are saved
as a part of your MATLAB preferences.

The cell array allconfigs always contains a configuration called
'local' for the local scheduler. The default configuration returned by
defaultParallelConfig is guaranteed to be found in allconfigs.

12-23

defaultParallelConfig

If the default configuration has been deleted, or if it has never been set,
defaultParallelConfig returns 'local' as the default configuration.

See Also findResource, matlabpool, pmode

12-24

demote

Purpose Demote job in job manager queue

Syntax demote(jm, job)

Arguments jm The job manager object that contains the job.

job Job object demoted in the job queue.

Description demote(jm, job) demotes the job object job that is queued in the job
manager jm.

If job is not the last job in the queue, demote exchanges the position
of job and the job that follows it in the queue.

See Also createJob, findJob, promote, submit

12-25

destroy

Purpose Remove job or task object from parent and memory

Syntax destroy(obj)

Arguments obj Job or task object deleted from memory.

Description destroy(obj) removes the job object reference or task object reference
obj from the local session, and removes the object from the job manager
memory. When obj is destroyed, it becomes an invalid object. You can
remove an invalid object from the workspace with the clear command.

If multiple references to an object exist in the workspace, destroying
one reference to that object invalidates all the remaining references to
it. You should remove these remaining references from the workspace
with the clear command.

The task objects contained in a job will also be destroyed when a job
object is destroyed. This means that any references to those task objects
will also be invalid.

Remarks Because its data is lost when you destroy an object, destroy should be
used after output data has been retrieved from a job object.

Examples Destroy a job and its tasks.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
destroy(j);
clear t
clear j

Note that task t is also destroyed as part of job j.

See Also createJob, createTask

12-26

dfeval

Purpose Evaluate function using cluster

Syntax [y1,...,ym] = dfeval(F, x1,...,xn)
y = dfeval(..., 'P1',V1,'P2',V2,...)
[y1,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',

'ConfigurationName',...)

Arguments F Function name, function handle, or cell array
of function names or handles.

x1, ..., xn Cell arrays of input arguments to the functions.

y1, ..., ym Cell arrays of output arguments; each element
of a cell array corresponds to each task of the
job.

'P1', V1, 'P2',
V2, ...

Property name/property value pairs for the
created job object; can be name/value pairs or
structures.

Description [y1,...,ym] = dfeval(F, x1,...,xn) performs the equivalent of an
feval in a cluster of machines using Distributed Computing Toolbox.
dfeval evaluates the function F, with arguments provided in the cell
arrays x1,...,xn. F can be a function handle, a function name, or a cell
array of function handles/function names where the length of the cell
array is equal to the number of tasks to be executed. x1,...,xn are the
inputs to the function F, specified as cell arrays in which the number of
elements in the cell array equals the number of tasks to be executed.
The first task evaluates function F using the first element of each cell
array as input arguments; the second task uses the second element of
each cell array, and so on. The sizes of x1,...,xn must all be the same.

The results are returned to y1,...,ym, which are column-based cell
arrays, each of whose elements corresponds to each task that was
created. The number of cell arrays (m) is equal to the number of output
arguments returned from each task. For example, if the job has 10

12-27

dfeval

tasks that each generate three output arguments, the results of dfeval
will be three cell arrays of 10 elements each.

y = dfeval(..., 'P1',V1,'P2',V2,...) accepts additional
arguments for configuring different properties associated with the job.
Valid properties and property values are

• Job object property value pairs, specified as name/value pairs or
structures. (Properties of other object types, such as scheduler, task,
or worker objects are not permitted. Use a configuration to set
scheduler and task properties.)

• 'JobManager','JobManagerName'. This specifies the job manager
on which to run the job. If you do not use this property to specify a
job manager, the default is to run the job on the first job manager
returned by findResource.

• 'LookupURL','host:port'. This makes a unicast call to the job
manager lookup service at the specified host and port. The job
managers available for this job are those accessible from this lookup
service. For more detail, see the description of this option on the
findResource reference page.

• 'StopOnError',true|{false}. You may also set the value to logical
1 (true) or 0 (false). If true (1), any error that occurs during
execution in the cluster will cause the job to stop executing. The
default value is 0 (false), which means that any errors that occur
will produce a warning but will not stop function execution.

[y1,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',
'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. For details about
defining and applying configurations, see “Programming with User
Configurations” on page 2-6. Note that configurations enable you to use
dfeval with any type of scheduler.

12-28

dfeval

Note that dfeval runs synchronously (sync); that is, it does not return
the MATLAB prompt until the job is completed. For further discussion
of the usage of dfeval, see “Evaluating Functions Synchronously” on
page 5-2.

Examples Create three tasks that return a 1-by-1, a 2-by-2, and a 3-by-3 random
matrix.

y = dfeval(@rand,{1 2 3})
y =

[0.9501]
[2x2 double]
[3x3 double]

Create two tasks that return random matrices of size 2-by-3 and 1-by-4.

y = dfeval(@rand,{2 1},{3 4});
y{1}
ans =

0.8132 0.1389 0.1987
0.0099 0.2028 0.6038

y{2}
ans =

0.6154 0.9218 0.1763 0.9355

Create two tasks, where the first task creates a 1-by-2 random array
and the second task creates a 3-by-4 array of zeros.

y = dfeval({@rand @zeros},{1 3},{2 4});
y{1}
ans =

0.0579 0.3529
y{2}
ans =

0 0 0 0
0 0 0 0
0 0 0 0

12-29

dfeval

Create five random 2-by-4 matrices using MyJobManager to execute
tasks, where the tasks time out after 10 seconds, and the function will
stop if an error occurs while any of the tasks are executing.

y = dfeval(@rand,{2 2 2 2 2},{4 4 4 4 4}, ...
'JobManager','MyJobManager','Timeout',10,'StopOnError',true);

Evaluate the user function myFun using the cluster as defined in the
configuration myConfig.

y = dfeval(@myFun, {task1args, task2args, task3args}, ...
'configuration', 'myConfig', ...
'FileDependencies', {'myFun.m'});

See Also dfevalasync, feval, findResource

12-30

dfevalasync

Purpose Evaluate function asynchronously using cluster

Syntax Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1',V1,'P2',V2,
...)

Job = dfeval(F, numArgOut, x1,...,xn, ... 'configuration',
'ConfigurationName',...)

Arguments Job Job object created to evaluation the
function.

F Function name, function handle, or cell
array of function names or handles.

numArgOut Number of output arguments from each
task’s execution of function F.

x1, ..., xn Cell arrays of input arguments to the
functions.

'P1', V1, 'P2',
V2,...

Property name/property value pairs for the
created job object; can be name/value pairs
or structures.

Description Job = dfevalasync(F, numArgOut, x1,...,xn,
'P1',V1,'P2',V2,...) is equivalent to dfeval, except that
it runs asynchronously (async), returning to the prompt immediately
with a single output argument containing the job object that it has
created and sent to the cluster. You have immediate access to the
job object before the job is completed. You can use waitForState to
determine when the job is completed, and getAllOutputArguments to
retrieve your results.

Job = dfeval(F, numArgOut, x1,...,xn, ... 'configuration',
'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. For details about
defining and applying configurations, see “Programming with User

12-31

dfevalasync

Configurations” on page 2-6. Note that configurations enable you to use
dfevalasync with any type of scheduler.

For further discussion on the usage of dfevalasync, see “Evaluating
Functions Asynchronously” on page 5-8.

Examples Execute a sum function distributed in three tasks.

job = dfevalasync(@sum,1,{[1,2],[3,4],[5,6]}, ...
'jobmanager','MyJobManager');

When the job is finished, you can obtain the results associated with
the job.

waitForState(job);
data = getAllOutputArguments(job)
data =

[3]
[7]
[11]

data is an M-by-numArgOut cell array, where M is the number of tasks.

See Also dfeval, feval, getAllOutputArguments, waitForState

12-32

distribdim

Purpose Distributed dimension of distributed array

Syntax dim = distribdim(dist)

Description dim = distribdim(dist) returns the distribution dimension of a
distributed array. If dim is -1, the distribution dimension is unspecified.

See Also darray, localspan, partition

12-33

distribute

Purpose Distribute replicated array

Syntax D = distribute(X)
D = distribute(X, dim)
D = distribute(X, dist)

Description D = distribute(X) distributes X on its last nonsingleton dimension
using the default dcolon-based distributor. X must be a replicated
array, namely it must have the same value on all labs. size(D) is the
same as size(X).

D = distribute(X, dim) distributes X over dimension dim. dim must
be between 1 and ndims(X).

D = distribute(X, dist) for distributor dist distributes X
accordingly. dist should specify distribution dimension (dim) and
partition (PAR); but if it does not, dim is taken to be the last nonsingleton
dimension and PAR is taken to be dcolonpartition(size(X, dim)).

If X is a replicated array, X = gather(distribute(X)) returns the
original replicated array, X.

Using distribute on a replicated array is not the most memory-efficient
way of creating a distributed array. Use the darray or the zeros(m, n,
..., dist) family of functions instead.

Remarks distribute is intended for use only with replicated arrays that are
identical on all labs. A function such as rand generates a different
(variant) array on each lab.

gather essentially performs the inverse of distribute.

Examples D = distribute(magic(numlabs));
D = distribute(cat(3, pascal(4), hilb(4), magic(4), eye(4)), 3);

See Also darray, dcolonpartition, gather

12-34

eye

Purpose Create distributed identity matrix

Syntax D = eye(n, dist)
D = eye(m, n, dist)
D = eye([m, n], dist)
D = eye(..., classname, dist)

Description D = eye(n, dist) creates an n-by-n distributed array of underlying
class double. D is distributed by dimension dim, where dim
= distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = eye(m, n, dist) and D = eye([m, n], dist) create an m-by-n
distributed array of underlying class double. The distribution dimension
dim and partition PAR can be specified by dist as above, but if they are
not specified, dim is taken to be the last nonsingleton dimension of D, and
PAR is provided by dcolonpartition over the size in that dimension.

D = eye(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular eye
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples With four labs,

D = eye(1000, darray())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = eye(10, 10, 'uint16', darray('1d', 2, 1:numlabs))

12-35

eye

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also eye MATLAB function reference page

cell, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

12-36

false

Purpose Create distributed false array

Syntax F = false(n, dist)
F = false(m, n, dist)
F = false([m, n], dist)

Description F = false(n, dist) creates an n-by-n distributed array of
underlying class logical. F is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then F is distributed
by its second dimension. If PAR is unspecified, then F uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to false.

F = false(m, n, dist) and F = false([m, n], dist) create an
m-by-n distributed array of underlying class logical. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of F, and PAR is provided by dcolonpartition over the size
in that dimension.

Examples With four labs,

F = false(1000, darray())

creates a 1000-by-1000 distributed double array F, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of F.

F = false(10, 10, darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed logical array F, distributed by its columns.
Each lab contains a 10-by-labindex local piece of F.

12-37

false

See Also false MATLAB function reference page

cell, eye, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

12-38

findJob

Purpose Find job objects stored in scheduler

Syntax out = findJob(sched)
[pending queued running finished] = findJob(sched)
out = findJob(sched,'p1',v1,'p2',v2,...)

Arguments sched Scheduler object in which to find the job.

pending Array of jobs whose State is pending in
scheduler sched.

queued Array of jobs whose State is queued in
scheduler sched.

running Array of jobs whose State is running in
scheduler sched.

finished Array of jobs whose State is finished in
scheduler sched.

out Array of jobs found in scheduler sched.

p1, p2 Job object properties to match.

v1, v2 Values for corresponding object properties.

Description out = findJob(sched) returns an array, out, of all job objects stored
in the scheduler sched. Jobs in the array are ordered by the ID property
of the jobs, indicating the sequence in which they were created.

[pending queued running finished] = findJob(sched) returns
arrays of all job objects stored in the scheduler sched, by state. Within
pending, running, and finished, the jobs are returned in sequence of
creation. Jobs in the array queued are in the order in which they are
queued, with the job at queued(1) being the next to execute.

out = findJob(sched,'p1',v1,'p2',v2,...) returns an array, out,
of job objects whose property names and property values match those
passed as parameter-value pairs, p1, v1, p2, v2.

12-39

findJob

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure
field names are job object property names and the field values are the
appropriate property values to match.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyJob, then findJob will not find
that object while searching for a Name property value of myjob.

See Also createJob, findResource, findTask, submit

12-40

findResource

Purpose Find available distributed computing resources

Syntax out = findResource('scheduler','type','SchedType')
out = findResource('scheduler','type','jobmanager', ...

'LookupURL','host:port')
out = findResource('scheduler','type','SchedType', ...,

'p1', v1, 'p2', v2,...)
out = findResource('scheduler', ...

'configuration', 'ConfigurationName')
out = findResource('worker')
out = findResource('worker','LookupURL','host:port')
out = findResource('worker', ..., 'p1', v1, 'p2', v2,...)

Arguments out Object or array of objects returned.

'scheduler' Literal string specifying that you are finding
a scheduler, which can be a job manager or a
third-party scheduler.

'SchedType' Specifies the type of scheduler: 'jobmanager',
'local', 'ccs', 'LSF', 'mpiexec', or any
string that starts with 'generic'.

'worker' Literal string specifying that you are finding
a worker.

'LookupURL' Literal string to indicate usage of a remote
lookup service.

'host:port' Host name and (optionally) port of remote
lookup service to use.

p1, p2 Object properties to match.

v1, v2 Values for corresponding object properties.

'configuration' Literal string to indicate usage of a
configuration.

'ConfigurationName' Name of configuration to use.

12-41

findResource

Description out = findResource('scheduler','type','SchedType') out =
findResource('worker') return an array, out, containing objects
representing all available distributed computing schedulers of the given
type, or workers. SchedType can be 'jobmanager', 'local', 'ccs',
'LSF', 'mpiexec', or any string starting with 'generic'. A 'local'
scheduler will queue jobs for running on workers that it will start on
your local client machine. You can use different scheduler types starting
with 'generic' to identify one generic scheduler or configuration from
another. For third-party schedulers, job data is stored in the location
specified by the scheduler object’s DataLocation property.

out = findResource('scheduler','type','jobmanager',
... 'LookupURL','host:port')
out = findResource('worker','LookupURL','host:port') use the
lookup process of the job manager running at a specific location. The
lookup process is part of a job manager. By default, findResource uses
all the lookup processes that are available to the local machine via
multicast. If you specify 'LookupURL' with a host, findResource uses
the job manager lookup process running at that location. The port is
optional, and is only necessary if the lookup process was configured to
use a port other than the default BASEPORT setting of the mdce_def file.
This URL is where the lookup is performed from, it is not necessarily
the host running the job manager or worker. This unicast call is useful
when you want to find resources that might not be available via
multicast or in a network that does not support multicast.

Note LookupURL is ignored when finding third-party schedulers.

out = findResource(... ,'p1', v1, 'p2', v2,...) returns an
array, out, of resources whose property names and property values
match those passed as parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported by
the set function.

12-42

findResource

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example,
if get returns the Name property value as 'MyJobManager', then
findResource will not find that object if searching for a Name property
value of 'myjobmanager'.

out = findResource('scheduler', ... 'configuration',
'ConfigurationName') returns an array, out, of schedulers whose
property names and property values match those defined by the
parameters in the configuration ConfigurationName. For details about
defining and applying configurations, see “Programming with User
Configurations” on page 2-6.

Remarks Note that it is permissible to use parameter-value string pairs,
structures, parameter-value cell array pairs, and configurations in the
same call to findResource.

Examples Find a particular job manager by its name and host.

jm1 = findResource('scheduler','type','jobmanager', ...
'Name', 'ClusterQueue1');

Find all job managers. In this example, there are four.

all_job_managers = findResource('scheduler','type','jobmanager')

all_job_managers =

distcomp.jobmanager: 1-by-4

Find all job managers accessible from the lookup service on a particular
host.

jms = findResource('scheduler','type','jobmanager', ...
'LookupURL','host234');

Find a particular job manager accessible from the lookup service on
a particular host. In this example, subnet2.hostalpha port 6789 is
where the lookup is performed, but the job manager named SN2Jmgr
might be running on another machine.

12-43

findResource

jm = findResource('scheduler','type','jobmanager', ...

'LookupURL', 'subnet2.hostalpha:6789', 'Name', 'SN2JMgr');

Find the LSF scheduler on the network.

lsf_sched = findResource('scheduler','type','LSF')

Create a local scheduler that will start workers on the client machine
for running your job.

local_sched = findResource('scheduler','type','local')

See Also findJob, findTask

12-44

findTask

Purpose Task objects belonging to job object

Syntax tasks = findTask(obj)
[pending running finished] = findTask(obj)
tasks = findTask(obj,'p1',v1,'p2',v2,...)

Arguments obj Job object.

tasks Returned task objects.

pending Array of tasks in job obj whose State is
pending.

running Array of tasks in job obj whose State is
running.

finished Array of tasks in job obj whose State is
finished.

p1, p2 Task object properties to match.

v1, v2 Values for corresponding object properties.

Description tasks = findTask(obj) gets a 1-by-N array of task objects belonging
to a job object obj Tasks in the array are ordered by the ID property of
the tasks, indicating the sequence in which they were created.

[pending running finished] = findTask(obj) returns arrays of
all task objects stored in the job object obj, sorted by state. Within
each state (pending, running, and finished), the tasks are returned in
sequence of creation.

tasks = findTask(obj,'p1',v1,'p2',v2,...) gets a 1-by-N array
of task objects belonging to a job object obj. The returned task objects
will be only those having the specified property-value pairs.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure

12-45

findTask

field names are object property names and the field values are the
appropriate property values to match.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyTask, then findTask will not find
that object while searching for a Name property value of mytask.

Remarks If obj is contained in a remote service, findTask will result in a call to
the remote service. This could result in findTask taking a long time to
complete, depending on the number of tasks retrieved and the network
speed. Also, if the remote service is no longer available, an error will
be thrown.

Examples Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

obj = createJob(jm);

Add a task to the job object.

createTask(obj, @rand, 1, {10})

Create the task object t, which refers to the task we just added to obj.

t = findTask(obj)

See Also createJob, createTask, findJob

12-46

for

Purpose For-loop over distributed range

Syntax FOR variable = drange(colonop)
statement
...
statement

end

Description The general format is

FOR variable = drange(colonop)
statement
...
statement

end

The colonop is an expression of the form start:increment:finish
or start:finish. The default value of increment is 1. The colonop
is partitioned by dcolon into numlabs contiguous segments of nearly
equal length. Each segment becomes the iterator for a conventional
for-loop on an individual lab.

The most important property of the loop body is that each iteration
must be independent of the other iterations. Logically, the iterations
can be done in any order. No communication with other labs is allowed
within the loop body. The functions that perform communication are
gop, gcat, gplus, darray, distribute, gather, and redistribute.

It is possible to access portions of distributed arrays that are local to
each lab, but it is not possible to access other portions of distributed
arrays.

The break statement can be used to terminate the loop prematurely.

12-47

for

Examples Find the rank of magic squares. Access only the local portion of a
distributed array.

r = zeros(1, 40, darray());
for n = drange(1:40)

r(n) = rank(magic(n));
end
r = gather(r);

Perform Monte Carlo approximation of pi. Each lab is initialized to a
different random number state.

m = 10000;
for p = drange(1:numlabs)

z = rand(m, 1) + i*rand(m, 1);
c = sum(abs(z) < 1)

end
k = gplus(c)
p = 4*k/(m*numlabs);

Attempt to compute Fibonacci numbers. This will not work, because the
loop bodies are dependent.

f = zeros(1, 50, darray());
f(1) = 1;
f(2) = 2;
for n = drange(3:50)

f(n) = f(n - 1) + f(n - 2)
end

See Also for MATLAB function reference page

numlabs, parfor

12-48

gather

Purpose Convert distributed array into replicated array

Syntax X = gather(D)
X = gather(D, lab)

Description X = gather(D) is a replicated array formed from the distributed
array D.

D = distribute(gather(D)) returns the original distributed array D.

X = gather(D, lab) converts a distributed array D to a variant array
X, such that all of the data is contained on lab lab, and X is a 0-by-0
empty double on all other labs.

Remarks Note that gather assembles the distributed array in the workspaces
of all the labs on which it executes, not on the MATLAB client. If you
want to transfer a distributed array into the client workspace, first
gather it, then move it from a lab to the client with pmode lab2client.
See the pmode reference page for more details.

As the gather function requires communication between all the labs,
you cannot gather data from all the labs onto a single lab by placing the
function inside a conditional statement such as if labindex == 1.

As gather performs the inverse of distribute, be aware that if you
use distribute on a nonreplicated array, gather does not return the
original. For example, gather(distribute(rand(n,m))) does not
return the original random matrix, because rand generates a different
matrix on each lab in the first place, therefore the original matrix is
variant, not replicated.

Examples Distribute a magic square across your labs, then gather the matrix onto
every lab. This code returns M = magic(n) on all labs.

D = distribute(magic(n))
M = gather(D)

12-49

gather

Gather all of the data in D onto lab 1, so that it can be saved from there.

D = distribute(magic(n));
out = gather(D, 1);
if labindex == 1

save data.mat out;
end

See Also distribute, pmode

12-50

gcat

Purpose Global concatenation

Syntax Xs = gcat(X)
Xs = gcat(X, dim)

Description Xs = gcat(X) concatenates the variant arrays X from each lab in the
second dimension. The result is replicated on all labs.

Xs = gcat(X, dim) concatenates the variant arrays X from each lab
in the dim-th dimension.

Examples With four labs,

Xs = gcat(labindex)

returns Xs = [1 2 3 4] on all four labs.

See Also cat MATLAB function reference page

gop, labindex, numlabs

12-51

get

Purpose Object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments obj An object or an array of objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property
values, or a cell array of property values.

Description get(obj) returns all property names and their current values to the
command line for obj.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that
property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array
of objects, then out will be an m-by-n cell array of property values
where m is equal to the length of obj and n is equal to the number of
properties specified.

Remarks When specifying a property name, you can do so without regard to case,
and you can make use of property name completion. For example, if jm
is a job manager object, then these commands are all valid and return
the same result.

out = get(jm,'HostAddress');
out = get(jm,'hostaddress');
out = get(jm,'HostAddr');

12-52

get

Examples This example illustrates some of the ways you can use get to return
property values for the job object j1.

get(j1,'State')
ans =
pending

get(j1,'Name')
ans =
MyJobManager_job

out = get(j1);
out.State
ans =
pending

out.Name
ans =
MyJobManager_job

two_props = {'State' 'Name'};
get(j1, two_props)
ans =

'pending' 'MyJobManager_job'

See Also inspect, set

12-53

getAllOutputArguments

Purpose Output arguments from evaluation of all tasks in job object

Syntax data = getAllOutputArguments(obj)

Arguments obj Job object whose tasks generate output arguments.

data M-by-N cell array of job results.

Description data = getAllOutputArguments(obj) returns data, the output data
contained in the tasks of a finished job. If the job has M tasks, each row
of the M-by-N cell array data contains the output arguments for the
corresponding task in the job. Each row has N columns, where N is the
greatest number of output arguments from any one task in the job. The
N elements of a row are arrays containing the output arguments from
that task. If a task has less than N output arguments, the excess arrays
in the row for that task are empty. The order of the rows in data will be
the same as the order of the tasks contained in the job.

Remarks If you are using a job manager, getAllOutputArguments results in a call
to a remote service, which could take a long time to complete, depending
on the amount of data being retrieved and the network speed. Also, if
the remote service is no longer available, an error will be thrown.

Note that issuing a call to getAllOutputArguments will not remove the
output data from the location where it is stored. To remove the output
data, use the destroy function to remove the individual task or their
parent job object.

The same information returned by getAllOutputArguments can be
obtained by accessing the OutputArguments property of each task in
the job.

Examples Create a job to generate a random matrix.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

12-54

getAllOutputArguments

j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);
data = getAllOutputArguments(j);

Display the 10-by-10 random matrix.

disp(data{1});
destroy(j);

See Also submit

12-55

getCurrentJob

Purpose Job object whose task is currently being evaluated

Syntax job = getCurrentJob

Arguments job The job object that contains the task currently being
evaluated by the worker session.

Description job = getCurrentJob returns the job object that is the Parent of the
task currently being evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

See Also getCurrentJobmanager, getCurrentTask, getCurrentWorker,
getFileDependencyDir

12-56

getCurrentJobmanager

Purpose Job manager object that distributed current task

Syntax jm = getCurrentJobmanager

Arguments jm The job manager object that distributed the task
currently being evaluated by the worker session.

Description jm = getCurrentJobmanager returns the job manager object that has
sent the task currently being evaluated by the worker session. jm is
the Parent of the task’s parent job.

Remarks If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

If your tasks are distributed by a third-party scheduler instead of a job
manager, getCurrentJobmanager returns a distcomp.taskrunner
object.

See Also getCurrentJob, getCurrentTask, getCurrentWorker,
getFileDependencyDir

12-57

getCurrentTask

Purpose Task object currently being evaluated in this worker session

Syntax task = getCurrentTask

Arguments task The task object that the worker session is currently
evaluating.

Description task = getCurrentTask returns the task object that is currently being
evaluated by the worker session.

Remarks If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

See Also getCurrentJob, getCurrentJobmanager, getCurrentWorker,
getFileDependencyDir

12-58

getCurrentWorker

Purpose Worker object currently running this session

Syntax worker = getCurrentWorker

Arguments worker The worker object that is currently evaluating the task
that contains this function.

Description worker = getCurrentWorker returns the worker object representing
the session that is currently evaluating the task that calls this function.

Remarks If the function is executed in a MATLAB session that is not a worker
or if you are using a third-party scheduler instead of a job manager,
you get an empty result.

Examples Create a job with one task, and have the task return the name of the
worker that evaluates it.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @() get(getCurrentWorker,'Name'), 1, {});
submit(j)
waitForState(j)
get(t,'OutputArgument')
ans =

'c5_worker_43'

The function of the task t is an anonymous function that first executes
getCurrentWorker to get an object representing the worker that is
evaluating the task. Then the task function uses get to examine
the Name property value of that object. The result is placed in the
OutputArgument property of the task.

See Also getCurrentJob, getCurrentJobmanager, getCurrentTask,
getFileDependencyDir

12-59

getDebugLog

Purpose Read output messages from job run by supported third-party or local
scheduler

Syntax str = getDebugLog(sched, job_or_task)

Arguments str Variable to which messages are returned as a
string expression.

sched Scheduler object referring to mpiexec, LSF, or
CCS scheduler, created by findResource.

job_or_task Object identifying job, parallel job, or task whose
messages you want.

Description str = getDebugLog(sched, job_or_task) returns any output written
to the standard output or standard error stream by the job or task
identified by job_or_task, being run by the scheduler identified by
sched. You cannot use this function to retrieve messages from a task if
the scheduler is mpiexec.

Examples Construct a scheduler object so you can create a parallel job. Assume
that you have already defined a configuration called mpiexec.

mpiexecObj = findResource('scheduler', 'Configuration', 'mpiexec');

Complete the initialization of the scheduler object by setting all the
necessary properties on it.

set(mpiexecObj, 'Configuration', 'mpiexec');

Create and submit a parallel job.

job = createParallelJob(mpiexecObj);
createTask(job, @labindex, 1, {});
submit(job);

12-60

getDebugLog

Look at the debug log.

getDebugLog(mpiexecObj, job);

See Also findResource, createJob, createParallelJob, createTask

12-61

getFileDependencyDir

Purpose Directory where FileDependencies are written on worker machine

Syntax depdir = getFileDependencyDir

Arguments depdir String indicating directory where FileDependencies
are placed.

Description depdir = getFileDependencyDir returns a string, which is the path
to the local directory into which FileDependencies are written. This
function will return an empty array if it is not called on a MATLAB
worker.

Examples Find the current directory for FileDependencies.

ddir = getFileDependencyDir;

Change to that directory to invoke an executable.

cdir = cd(ddir);

Invoke the executable.

[OK, output] = system('myexecutable');

Change back to the original directory.

cd(cdir);

See Also Functions

getCurrentJob, getCurrentJobmanager, getCurrentTask,
getCurrentWorker

Properties

FileDependencies

12-62

gop

Purpose Global operation across all labs

Syntax gop(@F, x)

Arguments F Function to operate across labs.

x Argument to function F, should be same variable on all
labs.

Description gop(@F, x) is the reduction via the function F of the quantities x from
each lab. The result is duplicated on all labs.

The function F(x,y) should accept two arguments of the same type and
produce one result of that type, so it can be used iteratively, that is,

F(F(x1,x2),F(x3,x4))

The function F should be associative, that is,

F(F(x1, x2), x3) = F(x1, F(x2, x3))

Examples Calculate the sum of all labs’ value for x.

gop(@plus,x)

Find the maximum value of x among all the labs.

gop(@max,x)

Perform the horizontal concatenation of x from all labs.

gop(@horzcat,x)

Calculate the 2-norm of x from all labs.

gop(@(a1,a2)norm([a1 a2]),x)

12-63

gop

See Also labBarrier, numlabs

12-64

gplus

Purpose Global addition

Syntax s = gplus(x)

Description s = gplus(x) returns the addition of the x from each lab. The result is
replicated on all labs.

Examples With four labs,

s = gplus(labindex)

returns s = 1 + 2 + 3 + 4 = 10 on all four labs.

See Also gop, labindex

12-65

help

Purpose Help for toolbox functions in Command Window

Syntax help class/function

Arguments class A Distributed Computing Toolbox object class:
distcomp.jobmanager, distcomp.job, or
distcomp.task.

function A function for the specified class. To see what
functions are available for a class, see the methods
reference page.

Description help class/function returns command-line help for the specified
function of the given class.

If you do not know the class for the function, use class(obj), where
function is of the same class as the object obj.

Examples Get help on functions from each of the Distributed Computing Toolbox
object classes.

help distcomp.jobmanager/createJob
help distcomp.job/cancel
help distcomp.task/waitForState

class(j1)
ans =
distcomp.job
help distcomp.job/createTask

See Also methods

12-66

Inf

Purpose Create distributed array of Inf values

Syntax D = Inf(n, dist)
D = Inf(m, n, dist)
D = Inf([m, n], dist)
D = Inf(..., classname, dist)

Description D = Inf(n, dist) creates an n-by-n distributed array of underlying
class double. D is distributed by dimension dim, where dim
= distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = Inf(m, n, dist) and D = Inf([m, n], dist) create an m-by-n
distributed array of underlying class double. The distribution dimension
dim and partition PAR can be specified by dist as above, but if they are
not specified, dim is taken to be the last nonsingleton dimension of D, and
PAR is provided by dcolonpartition over the size in that dimension.

D = Inf(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular Inf
function: 'double' (the default), and 'single'.

Examples With four labs,

D = Inf(1000, darray())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = Inf(10, 10, 'single', darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed single array D, distributed by its columns.
Each lab contains a 10-by-labindex local piece of D.

12-67

Inf

See Also Inf MATLAB function reference page

cell, eye, false, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

12-68

inspect

Purpose Open Property Inspector

Syntax inspect(obj)

Arguments obj An object or an array of objects.

Description inspect(obj) opens the Property Inspector and allows you to inspect
and set properties for the object obj.

Remarks You can also open the Property Inspector via the Workspace browser by
double-clicking an object.

The Property Inspector does not automatically update its display. To
refresh the Property Inspector, open it again.

Note that properties that are arrays of objects are expandable. In
the figure of the example below, the Tasks property is expanded to
enumerate the individual task objects that make up this property.
These individual task objects can also be expanded to display their
own properties.

12-69

inspect

Examples Open the Property Inspector for the job object j1.

inspect(j1)

See Also get, set

12-70

isdarray

Purpose True for distributed array

Syntax tf = isdarray(X)

Description tf = isdarray(X) returns true for a distributed array, or false
otherwise. For a description of a distributed array, see “Array Types”
on page 8-2.

Examples L = ones(100, 1)
D = ones(100, 1, darray())
isdarray(L) % returns false
isdarray(D) % returns true

See Also darray, distribute, zeros

12-71

isreplicated

Purpose True for replicated array

Syntax tf = isreplicated(X)

Description tf = isreplicated(X) returns true for a replicated array, or false
otherwise. For a description of a replicated array, see “Array Types”
on page 8-2.

Remarks isreplicated(X) requires checking for equality of the array X across
all labs. This might require extensive communication and time.
isreplicated is most useful for debugging or error checking small
arrays. A distributed array is not replicated.

Examples A = magic(3);
t = isreplicated(A); % returns t = true
B = magic(labindex);
f = isreplicated(B); % returns f = false

See Also isdarray

12-72

jobStartup

Purpose M-file for user-defined options to run when job starts

Syntax jobStartup(job)

Arguments job The job for which this startup is being executed.

Description jobStartup(job) runs automatically on a worker the first time the
worker evaluates a task for a particular job. You do not call this function
from the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/jobStartup.m

You add M-code to the file to define job initialization actions to be
performed on the worker when it first evaluates a task for this job.

Alternatively, you can create a file called jobStartup.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed jobStartup.m file.

See Also Functions

taskFinish, taskStartup

Properties

FileDependencies

12-73

labBarrier

Purpose Block execution until all labs reach this call

Syntax labBarrier

Description labBarrier blocks execution of a parallel algorithm until all labs have
reached the call to labBarrier. This is useful for coordinating access to
shared resources such as file I/O.

Examples In this example, all labs know the shared data filename.

fname = 'c:\data\datafile.mat';

Lab 1 writes some data to the file, which all other labs will read.

if labindex == 1

data = randn(100, 1);

save(fname, 'data');

pause(5) %allow time for file to become available to other labs

end

All labs wait until all have reached the barrier; this ensures that no lab
attempts to load the file until lab 1 writes to it.

labBarrier;
load(fname);

See Also labBroadcast

12-74

labBroadcast

Purpose Send data to all labs or receive data sent to all labs

Syntax shared_data = labBroadcast(senderlab, data)
shared_data = labBroadcast(senderlab)

Arguments senderlab The labindex of the lab sending the broadcast.

data The data being broadcast. This argument is
required only for the lab that is broadcasting.
The absence of this argument indicates that a
lab is receiving.

shared_data The broadcast data as it is received on all other
labs.

Description shared_data = labBroadcast(senderlab, data) sends the specified
data to all executing labs. The data is broadcast from the lab with
labindex == senderlab, and received by all other labs.

shared_data = labBroadcast(senderlab) receives on each executing
lab the specified shared_data that was sent from the lab whose
labindex is senderlab.

If labindex is not senderlab, then you do not include the data
argument. This indicates that the function is to receive data, not
broadcast it. The received data, shared_data, is identical on all labs.

This function blocks execution until the lab’s involvement in the
collective broadcast operation is complete. Because some labs may
complete their call to labBroadcast before others have started, use
labBarrier to guarantee that all labs are at the same point in a
program.

Examples In this case, the broadcaster is the lab whose labindex is 1.

broadcast_id = 1;
if labindex == broadcast_id

data = randn(10);

12-75

labBroadcast

shared_data = labBroadcast(broadcast_id, data);
else

shared_data = labBroadcast(broadcast_id);
end

See Also labBarrier, labindex

12-76

labindex

Purpose Index of this lab

Syntax id = labindex

Description id = labindex returns the index of the lab currently executing the
function. labindex is assigned to each lab when a job begins execution,
and applies only for the duration of that job. The value of labindex
spans from 1 to n, where n is the number of labs running the current
job, defined by numlabs.

See Also numlabs

12-77

labProbe

Purpose Test to see if messages are ready to be received from other lab

Syntax is_data_available = labProbe
is_data_available = labProbe(source)
is_data_available = labProbe('any',tag)
is_data_available = labProbe(source,tag)
[is_data_available, source, tag] = labProbe

Arguments source labindex of a particular lab from which to
test for a message.

tag Tag defined by the sending lab’s labSend
function to identify particular data.

'any' String to indicate that all labs should be
tested for a message.

is_data_available Boolean indicating if a message is ready to
be received.

Description is_data_available = labProbe returns a logical value indicating
whether any data is available for this lab to receive with the labReceive
function.

is_data_available = labProbe(source) tests for a message only
from the specified lab.

is_data_available = labProbe('any',tag) tests only for a message
with the specified tag, from any lab.

is_data_available = labProbe(source,tag) tests for a message
from the specified lab and tag.

[is_data_available, source, tag] = labProbe returns labindex
and tag of ready messages. If no data is available, source and tag are
returned as [].

See Also labindex, labReceive, labSend

12-78

labReceive

Purpose Receive data from another lab

Syntax data = labReceive
data = labReceive(source)
data = labReceive('any',tag)
data = labReceive(source,tag)
[data, source, tag] = labReceive

Arguments source labindex of a particular lab from which to
receive data.

tag Tag defined by the sending lab’s labSend
function to identify particular data.

'any' String to indicate that data can come from any
lab.

data Data sent by the sending lab’s labSend function.

Description data = labReceive receives data from any lab with any tag.

data = labReceive(source) receives data from the specified lab with
any tag

data = labReceive('any',tag) receives data from any lab with the
specified tag.

data = labReceive(source,tag) receives data from only the specified
lab with the specified tag.

[data, source, tag] = labReceive returns the source and tag with
the data.

Remarks This function blocks execution in the lab until the corresponding call to
labSend occurs in the sending lab.

See Also labBarrier, labindex, labProbe, labSend

12-79

labSend

Purpose Send data to another lab

Syntax labSend(data, destination)
labSend(data, destination, tag)

Arguments data Data sent to the other lab; any MATLAB data
type.

destination labindex of receiving lab.

tag Nonnegative integer to identify data.

Description labSend(data, destination) sends the data to the specified
destination, with a tag of 0.

labSend(data, destination, tag) sends the data to the specified
destination with the specified tag. data can be any MATLAB data
type. destination identifies the labindex of the receiving lab, and
must be either a scalar or a vector of integers between 1 and numlabs;
it cannot be labindex (i.e., the current lab). tag can be any integer
from 0 to 32767.

Remarks This function might return before the corresponding labReceive
completes in the receiving lab.

See Also labBarrier, labindex, labProbe, labReceive, numlabs

12-80

labSendReceive

Purpose Simultaneously send data to and receive data from another lab

Syntax received = labSendReceive(labTo, labFrom, data)
received = labSendReceive(labTo, labFrom, data, tag)

Arguments data Data on the sending lab that is sent to the
receiving lab; any MATLAB data type.

received Data accepted on the receiving lab.

labTo labindex of the lab to which data is sent.

labFrom labindex of the lab from which data is received.

tag Nonnegative integer to identify data.

Description received = labSendReceive(labTo, labFrom, data) sends data to
the lab whose labindex is labTo, and receives received from the lab
whose labindex is labFrom. labTo and labFrom must be scalars. This
function is conceptually equivalent to the following sequence of calls:

labSend(data, labTo);
received = labReceive(labFrom);

with the important exception that both the sending and receiving of
data happens concurrently. This can eliminate deadlocks that might
otherwise occur if the equivalent call to labSend would block.

If labTo is an empty array, labSendReceive does not send data, but
only receives. If labFrom is an empty array, labSendReceive does not
receive data, but only sends.

received = labSendReceive(labTo, labFrom, data, tag) uses
the specified tag for the communication. tag can be any integer from
0 to 32767.

Examples Create a unique set of data on each lab, and transfer each lab’s data one
lab to the right (to the next higher labindex).

12-81

labSendReceive

First use magic to create a unique value for the variant array mydata
on each lab.

mydata = magic(labindex)
1: mydata =
1: 1
2: mydata =
2: 1 3
2: 4 2
3: mydata =
3: 8 1 6
3: 3 5 7
3: 4 9 2

Define the lab on either side, so that each lab will receive data from the
lab on the “left” while sending data to the lab on the “right,” cycling
data from the end lab back to the beginning lab.

labTo = mod(labindex, numlabs) + 1; % one lab to the right

labFrom = mod(labindex - 2, numlabs) + 1; % one lab to the left

Transfer the data, sending each lab’s mydata into the next lab’s
otherdata variable, wrapping the third lab’s data back to the first lab.

otherdata = labSendReceive(labTo, labFrom, mydata)
1: otherdata =
1: 8 1 6
1: 3 5 7
1: 4 9 2
2: otherdata =
2: 1
3: otherdata =
3: 1 3
3: 4 2

Transfer data to the next lab without wrapping data from the last lab
to the first lab.

12-82

labSendReceive

if labindex < numlabs; labTo = labindex + 1; else labTo = []; end;

if labindex > 1; labFrom = labindex - 1; else labFrom = []; end;

otherdata = labSendReceive(labTo, labFrom, mydata)

1: otherdata =

1: []

2: otherdata =

2: 1

3: otherdata =

3: 1 3

3: 4 2

See Also labBarrier, labindex, labProbe, labReceive, labSend numlabs

12-83

length

Purpose Length of object array

Syntax length(obj)

Arguments obj An object or an array of objects.

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Examples Examine how many tasks are in the job j1.

length(j1.Tasks)
ans =

9

See Also size

12-84

local

Purpose Local portion of distributed array

Syntax L = local(A)

Description L = local(A) returns the local portion of a distributed array.

Examples With four labs

A = magic(4)
D = distribute(A, 1)
L = local(D)

returns

Lab 1: L = [16 2 3 13]
Lab 2: L = [5 11 10 8]
Lab 3: L = [9 7 6 12]
Lab 4: L = [4 14 15 1]

See Also darray, distribute, partition

12-85

localspan

Purpose Index range of local segment of distributed array

Syntax K = localspan(D)
[e, f] = localspan(D)
K = localspan(D, lab)
[e, f] = localspan(D, lab)

Description The local span of a distributor is the index range in the distributed
dimension for a distributed array on a particular lab.

K = localspan(D) returns a vector K, so that local(D) = D(..., K,
...) on the current lab.

[e, f] = localspan(D) returns two integers e and f so that local(D)
= D(..., e:f, ...) on the current lab.

K = localspan(D, lab) returns a vector K so that local(D) = D(...,
K, ...) on the specified lab.

[e, f] = localspan(D, lab) returns two integers e and f so that
local(D) = D(..., e:f, ...) on the specified lab.

In all of the above syntaxes, if the partition is unspecified, then K,
e, and f are all -1.

Examples dist = darray('1d', 2, [6 6 5 5])
On lab 1, K = localspan(dist) returns K = 1:6.
On lab 2, [e, f] = localspan(dist) returns e = 7, f = 12.
K = localspan(dist, 3) returns K = 13:17.
[e, f] = localspan(dist, 4) returns e = 18, f = 22.

See Also distribdim, local, partition

12-86

matlabpool

Purpose Start parallel language worker pool

Syntax matlabpool
matlabpool open
matlabpool open poolsize
matlabpool open conf
matlabpool open conf poolsize
matlabpool conf poolsize
matlabpool close
matlabpool close force
matlabpool close force conf

Description matlabpool enables the parallel language features within the MATLAB
language (e.g., parfor) by starting a parallel job which connects this
MATLAB client with a number of labs.

matlabpool or matlabpool open starts a worker pool using the default
configuration with the pool size specified by that configuration. You can
also specify the pool size using matlabpool open poolsize, but note
that most schedulers have a maximum number of processes that they
can start (4 for a local scheduler). If the configuration specifies a job
manager as the scheduler, matlabpool reserves its workers from among
those already running and available under that job manager. If the
configuration specifies a third-party scheduler, matlabpool instructs
the scheduler to start the workers.

matlabpool open conf or matlabpool open conf poolsize starts a
worker pool using the Distributed Computing Toolbox user configuration
conf rather than the default configuration to locate a scheduler. If the
pool size is specified, it overrides the maximum and minimum number
of workers specified in the configuration, and starts a pool of exactly
that number of workers, even if it has to wait for them to be available.

matlabpool conf poolsize is the same as matlabpool open conf
poolsize and is provided for convenience.

matlabpool close stops the worker pool, destroys the parallel job, and
makes all parallel language features revert to using the MATLAB client
for computing their results.

12-87

matlabpool

matlabpool close force destroys all parallel jobs created by
matlabpool for the current user under the scheduler specified by the
default configuration, including any jobs currently running.

matlabpool close force conf destroys all parallel jobs being run
under the scheduler specified in the configuration conf.

matlabpool can be invoked as either a command or a function. For
example, the following are equivalent:

matlabpool open conf 4
matlabpool('open', 'conf', 4)

Remarks When a pool of workers is open, the following commands entered in the
client’s Command Window also execute on all the workers:

cd
addpath
rmpath

This enables you to set the working directory and the path on all the
workers, so that a subsequent parfor-loop executes in the proper
context.

If any of these commands does not work on the client, it is not executed
on the workers either. For example, if addpath specifies a directory that
the client cannot see or access, the addpath command is not executed on
the workers. However, if the working directory or path can be set on the
client, but cannot be set as specified on any of the workers, you do not
get an error message returned to the client Command Window.

This slight difference in behavior is an issue especially in a
mixed-platform environment where the client is not the same platform
as the workers, where directories local to or mapped from the client are
not available in the same way to the workers, or where directories are
in a nonshared file system. For example, if you have a MATLAB client
running on Windows while the MATLAB workers are all running on
Linux machines, the same argument to addpath cannot work on both.
In this situation, you can use the function dctRunOnAll to assure that a
command runs on all the workers.

12-88

matlabpool

Examples Start a pool using the default configuration to define the number of labs.

matlabpool

Start a pool of 16 labs using a configuration called myConf.

matlabpool open myConf 16

See Also dctRunOnAll, parfor

12-89

methods

Purpose List functions of object class

Syntax methods(obj)
out = methods(obj)

Arguments obj An object or an array of objects.

out Cell array of strings.

Description methods(obj) returns the names of all methods for the class of which
obj is an instance.

out = methods(obj) returns the names of the methods as a cell array
of strings.

Examples Create job manager, job, and task objects, and examine what methods
are available for each.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

methods(jm)
Methods for class distcomp.jobmanager:
createJob demote pause resume
createParallelJob findJob promote

j1 = createJob(jm);
methods(j1)
Methods for class distcomp.job:
cancel destroy getAllOutputArguments waitForState
createTask findTask submit

t1 = createTask(j1, @rand, 1, {3});
methods(t1)
Methods for class distcomp.task:
cancel destroy waitForState

12-90

methods

See Also help, get

12-91

mpiLibConf

Purpose Location of MPI implementation

Syntax [primaryLib, extras] = mpiLibConf

Arguments primaryLib MPI implementation library used by a parallel
job.

extras Cell array of other required library names.

Description [primaryLib, extras] = mpiLibConf returns the MPI
implementation library to be used by a parallel job. primaryLib is the
name of the shared library file containing the MPI entry points. extras
is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create an M-file called
mpiLibConf, and place it on the MATLAB path. The recommended
location is matlabroot/toolbox/distcomp/user.

Remarks Under all circumstances, the MPI library must support all MPI-1
functions. Additionally, the MPI library must support null arguments
to MPI_Init as defined in section 4.2 of the MPI-2 standard. The
library must also use an mpi.h header file that is fully compatible
with MPICH2.

When used with the MathWorks job manager, the MPI library must
support the following additional MPI-2 functions:

• MPI_Open_port

• MPI_Comm_accept

• MPI_Comm_connect

Examples View the current MPI implementation library.

mpiLibConf
mpich2.dll

12-92

mpiprofile

Purpose Profile parallel communication and execution times

Syntax mpiprofile
mpiprofile on <options>
mpiprofile off
mpiprofile resume
mpiprofile clear
mpiprofile status
mpiprofile reset
mpiprofile info
mpiprofile viewer
mpiprofile('viewer', <profinfoarray>)

Description mpiprofile enables or disables the parallel profiler data collection on
a MATLAB worker running a parallel job. mpiprofile aggregates
statistics on execution time and communication times. The statistics
are collected in a manner similar to running the profile command on
each MATLAB worker. By default, the parallel profiling extensions
include array fields that collect information on communication with
each of the other labs. This command in general should be executed in
pmode or as part of a task in a parallel job.

mpiprofile on <options> starts the parallel profiler and clears
previously recorded profile statistics.

mpiprofile takes the following options:

12-93

mpiprofile

Option Description

-detail mmex

-detail builtin

This option specifies the set of
functions for which profiling
statistics are gathered. -detail
mmex (the default) records
information about M-functions,
M-subfunctions, and MEX-functions.
-detail builtin additionally
records information about built-in
functions such as eig or labReceive.

-messagedetail default

-messagedetail simplified

This option specifies the detail at
which communication information
is stored.

-messagedetail default collects
information on a per lab instance.

-messagedetail simplified
turns off collection for PerLab data
fields, which reduces the profiling
overhead. If you have a very large
cluster, you might want to use this
option; however you will not get all
the detailed inter-lab communication
plots in the viewer.

See mpiprofile info below.

-history

-nohistory

-historysize <size>

mpiprofile supports these options
in the same way as the standard
profile.

No other profile options are
supported by mpiprofile. Note that
these three options have no effect
on the data that is displayed by
mpiprofile viewer.

12-94

mpiprofile

mpiprofile off stops the parallel profiler. To reset the state of the
profiler and disable collecting communication information, you should
also call mpiprofile reset.

mpiprofile resume restarts the profiler without clearing previously
recorded function statistics. This works only in pmode or in the same
MATLAB worker session.

mpiprofile clear clears the profile information.

mpiprofile status returns a valid status when it runs on the worker.

mpiprofile reset turns off the parallel profiler and resets the
data collection back to the standard profiler. If you do not call reset
subsequent profile commands will collect MPI information.

mpiprofile info returns a profiling data structure with additional
fields to the one provided by the standard profile info in the
FunctionTable entry. All these fields are recorded on a per function and
per line basis, except for the PerLab fields.

Field Description

BytesSent Records the quantity of Data Sent

BytesReceived Records the quantity of Data Received

TimeWasted Records Communication Waiting Time

CommTime Records the Communication Time

CommTimePerLab Vector of Communication Receive Time for
each lab

TimeWastedPerLab Vector of Communication Waiting Time for
each lab

BytesReceivedPerLab Vector of Data Received from each lab

The three PerLab fields are collected only on a per function basis, and
can be turned off by typing the following command in pmode.

mpiprofile on -messagedetail simplified

12-95

mpiprofile

mpiprofile viewer is used in pmode after running user code with
mpiprofile on. Calling the viewer stops the profiler and opens the
graphical profile browser with parallel options. The output is an HTML
report displayed in the profiler window. The file listing at the bottom
of the function profile page shows several columns to the left of each
line of code. In the summary page

• Column 1 indicates the number of calls to that line.

• Column 2 indicates total time spent on the line in seconds.

• Columns 3-6 contain the communication information specific to the
parallel profiler

mpiprofile('viewer', <profinfoarray>) in function form can be
used from the client. A structure <profinfoarray> needs be passed
in as the second argument, which is an array of mpiprofile info
structures. See pInfoVector in the example below.

mpiprofile does not accept -timer clock options, as the
communication timer clock must be real.

For more information and examples on using the parallel profiler, see
“Using the Parallel Profiler” on page 2-18.

Examples In pmode, turn on the parallel profiler, run your function in parallel,
and call the viewer.

mpiprofile on;
% call your function;
mpiprofile viewer;

If you want to obtain the profiler information from a parallel job outside
of pmode (i.e., in the MATLAB client), you need to return output
arguments of mpiprofile info by using the functional form of the
command. Define your function foo(), and make it the task function
in a parallel job.

function [pInfo, yourResults] = foo

12-96

mpiprofile

mpiprofile on
initData = (rand(100, darray)*rand(100, darray));
pInfo = mpiprofile('info');
yourResults = gather(initData,1)

After the job runs and foo() is evaluated on your cluster, get the data
on the client.

A = getAllOutputArguments(yourJob);

Then view parallel profile information.

pInfoVector = [A{:, 1}];
mpiprofile('viewer', pInfoVector);

See Also profile MATLAB function reference page

mpiSettings, pmode

12-97

mpiSettings

Purpose Configure options for MPI communication

Syntax mpiSettings('DeadlockDetection','on')
mpiSettings('MessageLogging','on')
mpiSettings('MessageLoggingDestination','CommandWindow')
mpiSettings('MessageLoggingDestination','stdout')
mpiSettings('MessageLoggingDestination','File','filename')

Description mpiSettings('DeadlockDetection','on') turns on deadlock detection
during calls to labSend and labReceive (the default is 'off' for
performance reasons). If deadlock is detected, a call to labReceive
might cause an error. Although it is not necessary to enable deadlock
detection on all labs, this is the most useful option.

mpiSettings('MessageLogging','on') turns on MPI message logging.
The default is 'off'. The default destination is the MATLAB Command
Window.

mpiSettings('MessageLoggingDestination','CommandWindow') sends
MPI logging information to the MATLAB Command Window. If
the task within a parallel job is set to capture Command Window
output, the MPI logging information will be present in the task’s
CommandWindowOutput property.

mpiSettings('MessageLoggingDestination','stdout') sends MPI
logging information to the standard output for the MATLAB process. If
you are using a job manager, this is the MDCE service log file; if you
are using an mpiexec scheduler, this is the mpiexec debug log, which
you can read with getDebugLog.

mpiSettings('MessageLoggingDestination','File','filename')
sends MPI logging information to the specified file.

Remarks Setting the MessageLoggingDestination does not automatically enable
message logging. A separate call is required to enable message logging.

mpiSettings has to be called on the lab, not the client. That is, it
should be called within the task function, within jobStartup.m, or
within taskStartup.m.

12-98

mpiSettings

Examples % in "jobStartup.m" for a parallel job

mpiSettings('DeadlockDetection', 'on');

myLogFname = sprintf('%s_%d.log', tempname, labindex);

mpiSettings('MessageLoggingDestination', 'File', myLogFname);

mpiSettings('MessageLogging', 'on');

12-99

NaN

Purpose Create distributed array of NaN values

Syntax D = NaN(n, dist)
D = NaN(m, n, dist)
D = NaN([m, n], dist)
D = NaN(..., classname, dist)

Description D = NaN(n, dist) creates an n-by-n distributed array of underlying
class double. D is distributed by dimension dim, where dim
= distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = NaN(m, n, dist) and D = NaN([m, n], dist) create an m-by-n
distributed array of underlying class double. The distribution dimension
dim and partition PAR can be specified by dist as above, but if they are
not specified, dim is taken to be the last nonsingleton dimension of D, and
PAR is provided by dcolonpartition over the size in that dimension.

D = NaN(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular NaN
function: 'double' (the default), and 'single'.

Examples With four labs,

D = NaN(1000, darray())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = NaN(10, 10, 'single', darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed single array D, distributed by its columns.
Each lab contains a 10-by-labindex local piece of D.

12-100

NaN

See Also NaN MATLAB function reference page

cell, eye, false, Inf, ones, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

12-101

numlabs

Purpose Total number of labs operating in parallel on current job

Syntax n = numlabs

Description n = numlabs returns the total number of labs currently operating on
the current job. This value is the maximum value that can be used with
labSend and labReceive.

See Also labindex, labReceive, labSend

12-102

ones

Purpose Create distributed array of 1s

Syntax D = ones(n, dist)
D = ones(m, n, dist)
D = ones([m, n], dist)
D = ones(..., classname, dist)

Description D = ones(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = ones(m, n, dist) and D = ones([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = ones(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular ones
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples With four labs,

D = ones(1000, darray())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = ones(10, 10, 'uint16', darray('1d', 2, 1:numlabs))

12-103

ones

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also ones MATLAB function reference page

cell, eye, false, Inf, NaN, rand, randn, sparse, speye, sprand,
sprandn, true, zeros

12-104

parfor

Purpose Execute block of code in parallel

Syntax parfor (loopvar = initval:endval), statements, end
parfor (loopvar = initval:endval, M), statements, end

Description parfor (loopvar = initval:endval), statements, end allows you
to write statements that execute in parallel on a cluster of labs. initval
and endval must evaluate to finite integer values, or the range must
evaluate to a value that can be obtained by such an expression, that is,
an ascending row vector of consecutive integers.

The following table lists some ranges that are not valid.

Invalid parfor Range Reason Range Not Valid

parfor (i = 1:2:25) 1, 3, 5,... are not consecutive.

parfor (i = -7.5:7.5) -7.5, -6.5,... are not integers.

A = [3 7 -2 6 4 -4 9 3
7];

parfor (i = find(A>0))

The resulting range, 1, 2, 4,...,
has nonconsecutive integers.

parfor (i = [5;6;7;8]) [5;6;7;8] is a column vector, not a
row vector.

You can enter a parfor-loop on multiple lines, but if you put more
than one segment of the loop statement on the same line, separate the
segments with commas or semicolons:

parfor (i = range); <loop body>; end

parfor (loopvar = initval:endval, M), statements, end uses M
to specify the maximum number of MATLAB workers that will evaluate
statements in the body of the parfor-loop. M must be a nonnegative
integer. By default, MATLAB uses as many workers as it finds
available. If you specify an upper limit, MATLAB employs no more
than that number, even if additional workers are available. Use the
matlabpool command to make workers available for a parfor-loop.

12-105

parfor

If you request more resources than are available, MATLAB uses the
maximum number available at the time of the call. If no workers are
available, MATLAB executes the loop on the client in a serial manner.
In this situation, the parfor semantics are preserved in that the loop
iterations can be executed in any order.

Note Because of independence of iteration order, execution of parfor
does not guarantee deterministic results.

For a detailed description of parfor-loops, see Chapter 3, “Parallel
for-Loops (parfor)”.

Examples Suppose that f is a time-consuming function to compute, and that you
want to compute its value on each element of array A and place the
corresponding results in array B.

parfor (i = 1:length(A))
B(i) = f(A(i));

end

Because the loop iteration occurs in parallel, this evaluation can
complete much faster than it would in an analogous for-loop.

Next assume that A, B, and C are variables; and that f, g, and h are
functions.

parfor (i = 1:n)
t = f(A(i));
u = g(B(i));
C(i) = h(t, u);

end

If the time to compute f, g, and h is large, parfor will be significantly
faster than the corresponding for statement, even if n is relatively
small. Although the form of this statement is similar to a for statement,
the behavior can be significantly different. Notably, the assignments

12-106

parfor

to the variables i, t, and u do not affect variables with the same name
in the context of the parfor statement. The rationale is that the body
of the parfor is executed in parallel for all values of i, and there is
no deterministic way to say what the "final" values of these variables
are. Thus, parfor is defined to leave these variables unaffected in the
context of the parfor statement. By contrast, the variable C has a
different element set for each value of i, and these assignments do
affect the variable C in the context of the parfor statement.

Another important use of parfor has the following form:

s = 0;
parfor (i = 1:n)

if p(i) % assume p is a function
s = s + 1;

end
end

The key point of this example is that the conditional adding of 1 to
s can be done in any order; after the parfor statement has finished
executing, the value of s will depend only upon the number of iterations
for which p(i) is true. As long as p(i) depends only upon i, the value
of s will be deterministic. This technique generalizes to functions other
than plus, (+). Note that the variable s does refer to the variable in
the context of the parfor statement. The general rule is that the only
variables in the context of a parfor statement that can be affected by it
are those like s (combined by a suitable function like +) or those like C
in the previous example (set by indexed assignment).

See Also for, matlabpool, pmode, numlabs

12-107

partition

Purpose Partition of distributed array

Syntax PAR = partition(dist)

Description PAR = partition(dist) returns the partition of a distributed array,
describing how the array is distributed among the labs.

Examples partition(darray('1d', 2, [3 3 2 2]))

returns [3 3 2 2] .

See Also distribdim, localspan

12-108

pause

Purpose Pause job manager queue

Syntax pause(jm)

Arguments jm Job manager object whose queue is paused.

Description pause(jm) pauses the job manager’s queue so that jobs waiting in the
queued state will not run. Jobs that are already running also pause,
after completion of tasks that are already running. No further jobs or
tasks will run until the resume function is called for the job manager.

The pause function does nothing if the job manager is already paused.

See Also resume, waitForState

12-109

pload

Purpose Load file into parallel session

Syntax pload(fileroot)

Arguments fileroot Part of filename common to all saved files being loaded.

Description pload(fileroot) loads the data from the files named [fileroot
num2str(labindex)] into the labs running a parallel job. The files
should have been created by the psave command. The number of labs
should be the same as the number of files. The files should be accessible
to all the labs. Any distributed arrays are reconstructed by this function.
If fileroot contains an extension, the character representation of the
labindex will be inserted before the extension. Thus, pload('abc')
attempts to load the file abc1.mat on lab 1, abc2.mat on lab 2, and so on.

Examples Create three variables — one replicated, one variant, and one
distributed. Then save the data.

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,darray());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos

12-110

pload

Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
isdarray(D)

See Also load, save MATLAB function reference pages

labindex, numlabs, pmode, psave

12-111

pmode

Purpose Interactive parallel mode

Syntax pmode start
pmode start numlabs
pmode start conf numlabs
pmode quit
pmode exit
pmode client2lab clientvar labs labvar
pmode lab2client labvar lab clientvar
pmode cleanup conf

Description pmode allows the interactive parallel execution of MATLAB commands.
pmode achieves this by defining and submitting a parallel job, and
opening a Parallel Command Window connected to the labs running the
job. The labs then receive commands entered in the Parallel Command
Window, process them, and send the command output back to the
Parallel Command Window. Variables can be transferred between the
MATLAB client and the labs.

pmode start starts pmode, using the default configuration to
define the scheduler and number of labs. (The initial default
configuration is local; you can change it by using the function
defaultParallelConfig.) You can also specify the number of labs
using pmode start numlabs, but note that the local scheduler allows
for only up to four labs.

pmode start conf numlabs starts pmode using the Distributed
Computing Toolbox configuration conf to locate the scheduler, submits
a parallel job with the number of labs identified by numlabs, and
connects the Parallel Command Window with the labs. If the number of
labs is specified, it overrides the minimum and maximum number of
workers specified in the configuration.

pmode quit or pmode exit stops the parallel job, destroys it, and closes
the Parallel Command Window. You can enter this command at the
MATLAB prompt or the pmode prompt.

pmode client2lab clientvar labs labvar copies the variable
clientvar from the MATLAB client to the variable labvar on the labs

12-112

pmode

identified by labs. If labvar is omitted, the copy is named clientvar.
labs can be either a single lab index or a vector of lab indices. You can
enter this command at the MATLAB prompt or the pmode prompt.

pmode lab2client labvar lab clientvar copies the variable labvar
from the lab identified by lab, to the variable clientvar on the
MATLAB client. If clientvar is omitted, the copy is named labvar.
You can enter this command at the MATLAB prompt or the pmode
prompt. Note: If you use this command in an attempt to transfer a
distributed array to the client, you get a warning, and only the local
portion of the array on the specified lab is transferred. To transfer an
entire distributed array, first use the gather function to assemble the
whole array into the labs’ workspaces.

pmode cleanup conf destroys all parallel jobs created by pmode for the
current user running under the scheduler specified in the configuration
conf, including jobs that are currently running. The configuration is
optional; the default configuration is used if none is specified. You can
enter this command at the MATLAB prompt or the pmode prompt.

You can invoke pmode as either a command or a function, so the
following are equivalent.

pmode start conf 4
pmode('start', 'conf', 4)

Examples In the following examples, the pmode prompt (P>>) indicates commands
entered in the Parallel Command Window. Other commands are entered
in the MATLAB Command Window.

Start pmode using the default configuration to identify the scheduler
and number of labs.

pmode start

Start pmode using the local configuration with four local labs.

pmode start local 4

12-113

pmode

Start pmode using the configuration myconfig and eight labs on the
cluster.

pmode start myconfig 8

Execute a command on all labs.

P>> x = 2*labindex;

Copy the variable x from lab 7 to the MATLAB client.

pmode lab2client x 7

Copy the variable y from the MATLAB client to labs 1 to 8.

pmode client2lab y 1:8

Display the current working directory of each lab.

P>> pwd

See Also createParallelJob, defaultParallelConfig, findResource

12-114

promote

Purpose Promote job in job manager queue

Syntax promote(jm, job)

Arguments jm The job manager object that contains the job.

job Job object promoted in the queue.

Description promote(jm, job) promotes the job object job, that is queued in the
job manager jm.

If job is not the first job in the queue, promote exchanges the position
of job and the previous job.

See Also createJob, demote, findJob, submit

12-115

psave

Purpose Save data from parallel job session

Syntax psave(fileroot)

Arguments fileroot Part of filename common to all saved files.

Description psave(fileroot) saves the data from the labs’ workspace into the
files named [fileroot num2str(labindex)]. The files can be loaded
by using the pload command with the same fileroot, which should
point to a directory accessible to all the labs. If fileroot contains an
extension, the character representation of the labindex is inserted
before the extension. Thus, psave('abc') creates the files 'abc1.mat',
'abc2.mat', etc., one for each lab.

Examples Create three variables — one replicated, one variant, and one
distributed. Then save the data.

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,darray());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos

12-116

psave

Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
isdarray(D)

See Also load, save MATLAB function reference pages

labindex, numlabs, pmode, pload

12-117

rand

Purpose Create distributed array of uniformly distributed pseudo-random
numbers

Syntax D = rand(n, dist)
D = rand(m, n, dist)
D = rand([m, n], dist)
D = rand(..., classname, dist)

Description D = rand(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = rand(m, n, dist) and D = rand([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = rand(..., classname, dist) optionally specifies the class of the
distributed array D. Valid choices are the same as for the regular rand
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Remarks When you use rand in a distributed or parallel job (including pmode),
each worker or lab sets its random generator seed to a value that
depends only on the lab index or task ID. Therefore, the array on each
lab is unique for that job. However, if you repeat the job, you get the
same random data.

12-118

rand

Examples With four labs,

D = rand(1000, darray())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = rand(10, 10, 'uint16', darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also rand MATLAB function reference page

cell, eye, false, Inf, NaN, ones, randn, sparse, speye, sprand,
sprandn, true, zeros

12-119

randn

Purpose Create distributed array of normally distributed random values

Syntax D = randn(n, dist)
D = randn(m, n, dist)
D = randn([m, n], dist)
D = randn(..., classname, dist)

Description D = randn(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = randn(m, n, dist) and D = randn([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = randn(..., classname, dist) optionally specifies the class of
the distributed array D. Valid choices are the same as for the regular
rand function: 'double' (the default), 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Remarks When you use randn in a distributed or parallel job (including pmode),
each worker or lab sets its random generator seed to a value that
depends only on the lab index or task ID. Therefore, the array on each
lab is unique for that job. However, if you repeat the job, you get the
same random data.

Examples With four labs,

D = randn(1000, darray())

12-120

randn

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

D = randn(10, 10, 'uint16', darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also randn MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, sparse, speye, sprand,
sprandn, true, zeros

12-121

redistribute

Purpose Distribute array along different dimension

Syntax D2 = redistribute(D1)
D2 = redistribute(D1, dim)
D2 = redistribute(D1, dim, part)
D2 = redistribute(D1, D3)

Description D2 = redistribute(D1) redistributes a distributed array D1 with
its default distribution scheme. The distribution dimension dim is
the last nonsingleton dimension and the partition is that specified
by dcolonpartition(size(D1,dim)) along the size of D1 in the
distribution dimension.

D2 = redistribute(D1, dim) redistributes a distributed array
D1 along dimension dim. The partition is that specified by
dcolonpartition(size(D1, dim)). dim must be between 1 and
ndims(D1).

D2 = redistribute(D1, dim, part) redistributes a distributed array
D1 along dimension dim using partition part.

D2 = redistribute(D1, D3) redistributes a distributed array D1 using
the same distribution scheme as D3.

Examples Redistribute an array according to the distribution of another array.
First, create a magic square distributed by columns.

M = distribute(magic(10), darray('1d', 2, [1 2 3 4]));

Create a pascal matrix distributed by rows (first dimension).

P = distribute(pascal(10), 1);

Redistribute the pascal matrix according to the distribution (partition)
of the magic square.

R = redistribute(P, M);

See Also darray, dcolonpartition, distribdim, distribute, partition

12-122

resume

Purpose Resume processing queue in job manager

Syntax resume(jm)

Arguments jm Job manager object whose queue is resumed.

Description resume(jm) resumes processing of the job manager’s queue so that
jobs waiting in the queued state will be run. This call will do nothing
if the job manager is not paused.

See Also pause, waitForState

12-123

set

Purpose Configure or display object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)
set(obj,'configuration', 'ConfigurationName',...)

Arguments obj An object or an array of objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by
PropertyName.

PN A cell array of property names.

PV A cell array of property values.

props A structure array whose field names are the
property names for obj.

S A structure with property names and
property values.

'configuration' Literal string to indicate usage of a
configuration.

'ConfigurationName' Name of the configuration to use.

Description set(obj) displays all configurable properties for obj. If a property has
a finite list of possible string values, these values are also displayed.

props = set(obj) returns all configurable properties for obj and their
possible values to the structure props. The field names of props are the
property names of obj, and the field values are cell arrays of possible

12-124

set

property values. If a property does not have a finite set of possible
values, its cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName
if it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures one or
more property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n, where m is equal to the number of objects in
obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are object properties, and whose
field values are the values for the corresponding properties.

set(obj,'configuration', 'ConfigurationName',...) sets
the object properties with values specified in the configuration
ConfigurationName. For details about defining and applying
configurations, see “Programming with User Configurations” on page
2-6.

Remarks You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set. Additionally, you
can specify a property name without regard to case, and you can make
use of property name completion. For example, if j1 is a job object, the
following commands are all valid and have the same result:

set(j1,'Timeout',20)
set(j1,'timeout',20)
set(j1,'timeo',20)

12-125

set

Examples This example illustrates some of the ways you can use set to configure
property values for the job object j1.

set(j1,'Name','Job_PT109','Timeout',60);

props1 = {'Name' 'Timeout'};
values1 = {'Job_PT109' 60};
set(j1, props1, values1);

S.Name = 'Job_PT109';
S.Timeout = 60;
set(j1,S);

See Also get, inspect

12-126

setupForParallelExecution

Purpose Set options for submitting parallel jobs on LSF

Syntax setupForParallelExecution(lsf_sched, 'pc')
setupForParallelExecution(lsf_sched, 'pcNoDelegate')
setupForParallelExecution(lsf_sched, 'unix')

Arguments lsf_sched LSF scheduler object.

'pc',
'pcNoDelegate',
'unix'

Setting for parallel execution.

Description setupForParallelExecution(lsf_sched, 'pc') sets up the scheduler
to expect Windows PC worker machines, and selects the wrapper script
which expects to be able to call "mpiexec -delegate" on the workers. Note
that you still need to supply SubmitArguments that ensure that LSF
schedules your job to run only on PC workers. For example, including
'-R type==NTX86' in your SubmitArguments causes the scheduler to
select only 32-bit Windows workers.

setupForParallelExecution(lsf_sched, 'pcNoDelegate') is similar
to the 'pc' mode, except that the wrapper script does not attempt to
call "mpiexec -delegate", and so assumes that you have installed
some other means of achieving authentication without passwords.

setupForParallelExecution(lsf_sched, 'unix') sets up the
scheduler to expect UNIX worker machines, and selects the
default wrapper script for UNIX workers. You still need to supply
SubmitArguments that ensure LSF schedules your job to run only on
UNIX workers. For example, including '-R type==LINUX64' in your
SubmitArguments causes the scheduler to select only 64-bit Linux
workers.

This function sets the values for the properties
ParallelSubmissionWrapperScript and ClusterOsType.

12-127

setupForParallelExecution

Examples From any client, set up the scheduler to run parallel jobs only on PC
workers.

lsf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'pc');
set(lsf_sched, 'SubmitArguments', '-R type==NTX86');

From any client, set up the scheduler to run parallel jobs only on UNIX
workers.

lsf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'unix');
set(lsf_sched, 'SubmitArguments', '-R type==LINUX64');

See Also createParallelJob, findResource

12-128

size

Purpose Size of object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Arguments obj An object or an array of objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the
dimension specified by dim.

n The number of columns in obj.

m1,m2,m3,...,mn The lengths of the first n dimensions of obj.

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also length

12-129

sparse

Purpose Create distributed sparse matrix

Syntax D = sparse(m, n, dist)

Description D = sparse(m, n, dist) creates an m-by-n sparse distributed
array of underlying class double. D is distributed by dimension dim,
where dim = distribdim(dist) and with partition PAR, where PAR =
partition(dist). If dim is unspecified, then D is distributed by its last
nonsingleton dimension, or its second dimension if m and n are both 1 (D
is scalar). If PAR is unspecified, then D uses dcolonpartition over the
size in dimension dim as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to sparse.

Note To create a sparse distributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

logical(sparse(m, n, dist))

Examples With four labs,

D = sparse(1000, 1000, darray())

creates a 1000-by-1000 distributed sparse double array D. D is
distributed by its second dimension (columns), and each lab contains a
1000-by-250 local piece of D.

D = sprand(10, 10, darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed sparse double array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

12-130

sparse

See Also sparse MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, speye, sprand, sprandn,
true, zeros

12-131

speye

Purpose Create distributed sparse identity matrix

Syntax D = speye(n, dist)
D = speye(m, n, dist)
D = speye([m, n], dist)

Description D = speye(n, dist) creates an n-by-n sparse distributed array
of underlying class double. D is distributed by dimension dim,
where dim = distribdim(dist), and with partition PAR, where
par=partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is
to use a default distributor where both dim and PAR are unspecified
(dist=darray()) as input to speye.

D = speye(m, n, dist) and D = speye([m, n], dist) create an
m-by-n sparse distributed array of underlying class double. The
distribution dimension dim and partition PAR may be specified by
dist as above, but if they are not specified, dim is taken to be the last
nonsingleton dimension of D and PAR is provided by dcolonpartition
over the size in that dimension.

Note To create a sparse distributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

logical(speye(m, n, dist))

Examples With four labs,

D = speye(1000, darray())

creates a 1000-by-1000 sparse distributed double array D, distributed
by its second dimension (columns). Each lab contains a 1000-by-250
local piece of D.

12-132

speye

D = speye(10, 10, darray('1d', 2, 1:numlabs))

creates a 10-by-10 sparse distributed double array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also speye MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, sprand,
sprandn, true, zeros

12-133

sprand

Purpose Create distributed sparse array of uniformly distributed pseudo-random
values

Syntax D = sprand(m, n, density, dist)

Description D = sprand(m, n, density, dist) creates an m-by-n sparse
distributed array with approximately density*m*n uniformly
distributed nonzero double entries. D is distributed by dimension dim,
where dim = distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, D is distributed by its second
dimension. If PAR is unspecified, D uses dcolonpartition(n) as its
partition. The easiest way to do this is to use a default distributor
where both dim and PAR are unspecified (dist = darray()) as input
to sprandn.

Remarks When you use sprand in a distributed or parallel job (including pmode),
each worker or lab sets its random generator seed to a value that
depends only on the lab index or task ID. Therefore, the array on each
lab is unique for that job. However, if you repeat the job, you get the
same random data.

Examples With four labs,

D = sprand(1000, 1000, .001, darray())

creates a 1000-by-1000 sparse distributed double array D with
approximately 1000 nonzeros. D is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of D.

D = sprand(10, 10, .1, darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed double array D with approximately 10
nonzeros. D is distributed by its columns, and each lab contains a
10-by-labindex local piece of D.

12-134

sprand

See Also sprand MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprandn,
true, zeros

12-135

sprandn

Purpose Create distributed sparse array of normally distributed random values

Syntax D = sprandn(m, n, density, dist)

Description D = sprandn(m, n, density, dist) creates an m-by-n sparse
distributed array with approximately density*m*n normally
distributed nonzero double entries. D is distributed by dimension dim,
where dim = distribdim(dist), and with partition PAR, where PAR =
partition(dist). If dim is unspecified, D is distributed by its second
dimension. If PAR is unspecified, D uses dcolonpartition(n) as its
partition. The easiest way to do this is to use a default distributor
where both dim and PAR are unspecified (dist = darray()) as input
to sprandn.

Remarks When you use sprandn in a distributed or parallel job (including
pmode), each worker or lab sets its random generator seed to a value
that depends only on the lab index or task ID. Therefore, the array
on each lab is unique for that job. However, if you repeat the job, you
get the same random data.

Examples With four labs,

D = sprandn(1000, 1000, .001, darray())

creates a 1000-by-1000 sparse distributed double array D with
approximately 1000 nonzeros. D is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of D.

D = sprandn(10, 10, .1, darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed double array D with approximately 10
nonzeros. D is distributed by its columns, and each lab contains a
10-by-labindex local piece of D.

12-136

sprandn

See Also sprandn MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
true, zeros

12-137

submit

Purpose Queue job in scheduler

Syntax submit(obj)

Arguments obj Job object to be queued.

Description submit(obj) queues the job object, obj, in the scheduler queue. The
scheduler used for this job was determined when the job was created.

Remarks When a job contained in a scheduler is submitted, the job’s State
property is set to queued, and the job is added to the list of jobs waiting
to be executed.

The jobs in the waiting list are executed in a first in, first out manner;
that is, the order in which they were submitted, except when the
sequence is altered by promote, demote, cancel, or destroy.

Examples Find the job manager named jobmanager1 using the lookup service
on host JobMgrHost.

jm1 = findResource('scheduler','type','jobmanager', ...
'name','jobmanager1','LookupURL','JobMgrHost');

Create a job object.

j1 = createJob(jm1);

Add a task object to be evaluated for the job.

t1 = createTask(j1, @myfunction, 1, {10, 10});

Queue the job object in the job manager.

submit(j1);

See Also createJob, findJob

12-138

taskFinish

Purpose M-file for user-defined options to run when task finishes

Syntax taskFinish(task)

Arguments task The task being evaluated by the worker.

Description taskFinish(task) runs automatically on a worker each time the
worker finishes evaluating a task for a particular job. You do not call
this function from the client session, nor explicitly as part of a task
function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/taskFinish.m

You add M-code to the file to define task finalization actions to be
performed on the worker every time it finishes evaluating a task for
this job.

Alternatively, you can create a file called taskFinish.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed taskFinish.m file.

See Also Functions

jobStartup, taskStartup

Properties

FileDependencies

12-139

taskStartup

Purpose M-file for user-defined options to run when task starts

Syntax taskStartup(task)

Arguments task The task being evaluated by the worker.

Description taskStartup(task) runs automatically on a worker each time the
worker evaluates a task for a particular job. You do not call this function
from the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/taskStartup.m

You add M-code to the file to define task initialization actions to be
performed on the worker every time it evaluates a task for this job.

Alternatively, you can create a file called taskStartup.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed taskStartup.m file.

See Also Functions

jobStartup, taskFinish

Properties

FileDependencies

12-140

true

Purpose Create distributed true array

Syntax T = true(n, dist)
T = true(m, n, dist)
T = true([m, n], dist)

Description T = true(n, dist) creates an n-by-n distributed array of
underlying class logical. T is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then T is distributed
by its second dimension. If PAR is unspecified, then T uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to true.

T = true(m, n, dist) and T = true([m, n], dist) create an
m-by-n distributed array of underlying class logical. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of T, and PAR is provided by dcolonpartition over the size
in that dimension.

Examples With four labs,

T = true(1000, darray())

creates a 1000-by-1000 distributed double array T, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of T.

T = true(10, 10, darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed logical array T, distributed by its columns.
Each lab contains a 10-by-labindex local piece of T.

12-141

true

See Also true MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, zeros

12-142

waitForState

Purpose Wait for object to change state

Syntax waitForState(obj)
waitForState(obj, 'state')
waitForState(obj, 'state', timeout)

Arguments obj Job or task object whose change in state to wait for.

'state' Value of the object’s State property to wait for.

timeout Maximum time to wait, in seconds.

Description waitForState(obj) blocks execution in the client session until the
job or task identified by the object obj reaches the 'finished' state
or fails. For a job object, this occurs when all its tasks are finished
processing on remote workers.

waitForState(obj, 'state') blocks execution in the client session
until the specified object changes state to the value of 'state'. For a
job object, the valid states to wait for are 'queued', 'running', and
'finished'. For a task object, the valid states are 'running' and
'finished'.

If the object is currently or has already been in the specified state, a
wait is not performed and execution returns immediately. For example,
if you execute waitForState(job, 'queued') for job already in the
'finished' state, the call returns immediately.

waitForState(obj, 'state', timeout) blocks execution until either
the object reaches the specified 'state', or timeout seconds elapse,
whichever happens first.

Note Simulink models cannot run while MATLAB is blocked by
waitForState. If you must run Simulink from the MATLAB client while
also running distributed or parallel jobs, you cannot use waitForState.

12-143

waitForState

Examples Submit a job to the queue, and wait for it to finish running before
retrieving its results.

submit(job)
waitForState(job, 'finished')
results = getAllOutputArguments(job)

See Also pause, resume

12-144

zeros

Purpose Create distributed array of 0s

Syntax D = zeros(n, dist)
D = zeros(m, n, dist)
D = zeros([m, n], dist)
D = zeros(..., classname, dist)

Description D = zeros(n, dist) creates an n-by-n distributed array of
underlying class double. D is distributed by dimension dim, where
dim = distribdim(dist), and with partition PAR, where PAR
= partition(dist). If dim is unspecified, then D is distributed
by its second dimension. If PAR is unspecified, then D uses
dcolonpartition(n) as its partition. The easiest way to do this is to
use a default distributor where both dim and PAR are unspecified (dist
= darray()) as input to eye.

D = zeros(m, n, dist) and D = zeros([m, n], dist) create an
m-by-n distributed array of underlying class double. The distribution
dimension dim and partition PAR can be specified by dist as above,
but if they are not specified, dim is taken to be the last nonsingleton
dimension of D, and PAR is provided by dcolonpartition over the size
in that dimension.

D = zeros(..., classname, dist) optionally specifies the class of
the distributed array D. Valid choices are the same as for the regular
zeros function: 'double' (the default), 'single', 'int8', 'uint8',
'int16', 'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples With four labs,

D = zeros(1000, darray())

creates a 1000-by-1000 distributed double array D, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of D.

12-145

zeros

D = zeros(10, 10, 'uint16', darray('1d', 2, 1:numlabs))

creates a 10-by-10 distributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also zeros MATLAB function reference page

cell, eye, false, Inf, NaN, ones, rand, randn, sparse, speye, sprand,
sprandn, true

12-146

13

Properties — By Category

Job Manager Properties (p. 13-2) Control job manager objects

Scheduler Properties (p. 13-3) Control scheduler objects

Job Properties (p. 13-4) Control job objects

Task Properties (p. 13-6) Control task objects

Worker Properties (p. 13-7) Control worker objects

13 Properties — By Category

Job Manager Properties
BusyWorkers Workers currently running tasks

ClusterOsType Specify operating system of nodes on
which scheduler will start workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

HostAddress IP address of host running job
manager or worker session

HostName Name of host running job manager
or worker session

IdleWorkers Idle workers available to run tasks

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Name Name of job manager, job, or worker
object

NumberOfBusyWorkers Number of workers currently
running tasks

NumberOfIdleWorkers Number of idle workers available to
run tasks

State Current state of task, job, job
manager, or worker

Type Type of scheduler object

UserData Specify data to associate with object

13-2

Scheduler Properties

Scheduler Properties
ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of LSF cluster

ClusterOsType Specify operating system of nodes on
which scheduler will start workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data is
stored

EnvironmentSetMethod Specify means of setting
environment variables for mpiexec
scheduler

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MasterName Name of LSF master node

MatlabCommandToRun MATLAB command that generic
scheduler runs to start lab

MpiexecFileName Specify pathname of executable
mpiexec command

ParallelSubmission-
WrapperScript

Script LSF scheduler runs to start
labs

ParallelSubmitFcn Specify function to run when parallel
job submitted to generic scheduler

SchedulerHostname Name of host running CCS scheduler

13-3

13 Properties — By Category

SubmitArguments Specify additional arguments to
use when submitting job to LSF or
mpiexec scheduler

SubmitFcn Specify function to run when job
submitted to generic scheduler

Type Type of scheduler object

UserData Specify data to associate with object

WorkerMachineOsType Specify operating system of nodes on
which mpiexec scheduler will start
labs

Job Properties
Configuration Specify configuration to apply to

object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker can
access

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all workers
for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of workers
to perform job tasks

Name Name of job manager, job, or worker
object

13-4

Job Properties

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify M-file function to execute
when job is submitted to job manager
queue

RestartWorker Specify whether to restart MATLAB
workers before evaluating job tasks

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitArguments Specify additional arguments to
use when submitting job to LSF or
mpiexec scheduler

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

Timeout Specify time limit to complete task
or job

UserData Specify data to associate with object

UserName User who created job

13-5

13 Properties — By Category

Task Properties
CaptureCommandWindowOutput Specify whether to return Command

Window output

CommandWindowOutput Text produced by execution of task
object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

Error Task error information

ErrorIdentifier Task error identifier

ErrorMessage Message from task error

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

Function Function called when evaluating
task

ID Object identifier

InputArguments Input arguments to task object

NumberOfOutputArguments Number of arguments returned by
task function

OutputArguments Data returned from execution of task

Parent Parent object of job or task

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

Timeout Specify time limit to complete task
or job

13-6

Worker Properties

UserData Specify data to associate with object

Worker Worker session that performed task

Worker Properties
CurrentJob Job whose task this worker session

is currently evaluating

CurrentTask Task that worker is currently
running

HostAddress IP address of host running job
manager or worker session

HostName Name of host running job manager
or worker session

JobManager Job manager that this worker is
registered with

Name Name of job manager, job, or worker
object

PreviousJob Job whose task this worker
previously ran

PreviousTask Task that this worker previously ran

State Current state of task, job, job
manager, or worker

13-7

13 Properties — By Category

13-8

14

Properties — Alphabetical
List

BusyWorkers

Purpose Workers currently running tasks

Description The BusyWorkers property value indicates which workers are currently
running tasks for the job manager.

Characteristics Usage Job manager object

Read-only Always

Data type Array of worker objects

Values As workers complete tasks and assume new ones, the lists of workers
in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a
busy or idle worker does not get updated until the job manager runs the
next job and tries to send a task to that worker.

Examples Examine the workers currently running tasks for a particular job
manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

workers_running_tasks = get(jm, 'BusyWorkers')

See Also Properties

ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

14-2

CaptureCommandWindowOutput

Purpose Specify whether to return Command Window output

Description CaptureCommandWindowOutput specifies whether to return command
window output for the evaluation of a task object’s Function property.

If CaptureCommandWindowOutput is set true (or logical 1), the command
window output will be stored in the CommandWindowOutput property of
the task object. If the value is set false (or logical 0), the task does not
retain command window output.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Logical

Values The value of CaptureCommandWindowOutput can be set to true (or
logical 1) or false (or logical 0). When you perform get on the property,
the value returned is logical 1 or logical 0. The default value is logical 0
to save network bandwidth in situations where the output is not needed.

Examples Set all tasks in a job to retain any command window output generated
during task evaluation.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
.
alltasks = get(j, 'Tasks');
set(alltasks, 'CaptureCommandWindowOutput', true)

14-3

CaptureCommandWindowOutput

See Also Properties

Function, CommandWindowOutput

14-4

ClusterMatlabRoot

Purpose Specify MATLAB root for cluster

Description ClusterMatlabRoot specifies the pathname to MATLAB for the cluster
to use for starting MATLAB worker processes. The path must be
available from all nodes on which worker sessions will run. When
using the generic scheduler interface, your scheduler script can
construct a path to the executable by concatenating the values of
ClusterMatlabRoot and MatlabCommandToRun into a single string.

Characteristics Usage Scheduler object

Read-only Never

Data type String

Values ClusterMatlabRoot is a string. It must be structured appropriately for
the file system of the cluster nodes. The directory must be accessible
as expressed in this string, from all cluster nodes on which MATLAB
workers will run. If the value is empty, the MATLAB executable must
be on the path of the worker.

See Also Properties

DataLocation, MasterName, MatlabCommandToRun, PathDependencies

14-5

ClusterName

Purpose Name of LSF cluster

Description ClusterName indicates the name of the LSF cluster on which this
scheduler will run your jobs.

Characteristics Usage LSF Scheduler object

Read-only Always

Data type String

See Also Properties

DataLocation, MasterName, PathDependencies

14-6

ClusterOsType

Purpose Specify operating system of nodes on which scheduler will start workers

Description ClusterOsType specifies the operating system of the nodes on which a
scheduler will start workers, or whose workers are already registered
with a job manager.

Characteristics Usage Scheduler object

Read-only For job manager or CCS scheduler object

Data type String

Values The valid values for this property are 'pc', 'unix', and'mixed'.

• For CCS, the setting is always 'pc'.

• A value of 'mixed' is valid only for distributed jobs with LSF or
generic schedulers; or for distributed or parallel jobs with a job
manager. Otherwise, the nodes of the labs running a parallel job
with LSF, CCS, mpiexec, or generic scheduler must all be the same
platform.

• For parallel jobs with an LSF scheduler, this property value is set
when you execute the function setupForParallelExecution, so you
do not need to set the value directly.

See Also Functions

createParallelJob, findResource, setupForParallelExecution

Properties

ClusterName, MasterName, SchedulerHostname

14-7

ClusterSize

Purpose Number of workers available to scheduler

Description ClusterSize indicates the number of workers available to the scheduler
for running your jobs.

Characteristics Usage Scheduler object

Read-only For job manager or local scheduler object

Data type Double

Values For job managers and local schedulers, this property is read-only. The
value for a job manager represents the number of workers registered
with that job manager. The value for a local scheduler is 4.

For third-party schedulers (LSF, CCS, mpiexec, or generic), this property
settable, and its value specifies the maximum number of workers or
labs that this scheduler can start for running a job. For parallel jobs
running on a third-party scheduler, the job’s MaximumNumberOfWorkers
property value should not exceed the value of ClusterSize.

See Also Properties

BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

14-8

CommandWindowOutput

Purpose Text produced by execution of task object’s function

Description CommandWindowOutput contains the text produced during the execution
of a task object’s Function property that would normally be printed to
the MATLAB Command Window.

For example, if the function specified in the Function property
makes calls to the disp command, the output that would normally be
printed to the Command Window on the worker is captured in the
CommandWindowOutput property.

Whether to store the CommandWindowOutput is specified
using the CaptureCommandWindowOutput property. The
CaptureCommandWindowOutput property by default is logical 0 to save
network bandwidth in situations when the CommandWindowOutput is
not needed.

Characteristics Usage Task object

Read-only Always

Data type String

Values Before a task is evaluated, the default value of CommandWindowOutput
is an empty string.

Examples Get the Command Window output from all tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
alltasks = get(j, 'Tasks')
set(alltasks, 'CaptureCommandWindowOutput', true)

14-9

CommandWindowOutput

submit(j)
outputmessages = get(alltasks, 'CommandWindowOutput')

See Also Properties

Function, CaptureCommandWindowOutput

14-10

Configuration

Purpose Specify configuration to apply to object or toolbox function

Description You use the Configuration property to apply a configuration to an
object. For details about writing and applying configurations, see
“Programming with User Configurations” on page 2-6.

Setting the Configuration property causes all the applicable properties
defined in the configuration to be set on the object.

Characteristics Usage Scheduler, job, or task object

Read-only Never

Data type String

Values The value of Configuration is a string that matches the name of
a configuration. If a configuration was never applied to the object,
or if any of the settable object properties have been changed since a
configuration was applied, the Configuration property is set to an
empty string.

Examples Use a configuration to find a scheduler.

jm = findResource('scheduler','configuration','myConfig')

Use a configuration when creating a job object.

job1 = createJob(jm,'Configuration','jobmanager')

Apply a configuration to an existing job object.

job2 = createJob(jm)
set(job2,'Configuration','myjobconfig')

14-11

Configuration

See Also Functions

createJob, createParallelJob, createTask, dfeval, dfevalasync,
findResource

14-12

CreateTime

Purpose When task or job was created

Description CreateTime holds a date number specifying the time when a task or job
was created, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Task object or job object

Read-only Always

Data type String

Values CreateTime is assigned the job manager’s system time when a task
or job is created.

Examples Create a job, then get its CreateTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
get(j,'CreateTime')
ans =
Mon Jun 28 10:13:47 EDT 2004

See Also Functions

createJob, createTask

Properties

FinishTime, StartTime, SubmitTime

14-13

CurrentJob

Purpose Job whose task this worker session is currently evaluating

Description CurrentJob indicates the job whose task the worker is evaluating at
the present time.

Characteristics Usage Worker object

Read-only Always

Data type Job object

Values CurrentJob is an empty vector while the worker is not evaluating
a task.

See Also Properties

CurrentTask, PreviousJob, PreviousTask, Worker

14-14

CurrentTask

Purpose Task that worker is currently running

Description CurrentTask indicates the task that the worker is evaluating at the
present time.

Characteristics Usage Worker object

Read-only Always

Data type Task object

Values CurrentTask is an empty vector while the worker is not evaluating
a task.

See Also Properties

CurrentJob, PreviousJob, PreviousTask, Worker

14-15

DataLocation

Purpose Specify directory where job data is stored

Description DataLocation identifies where the job data is located.

Characteristics Usage Scheduler object

Read-only Never

Data type String or struct

Values DataLocation is a string or structure specifying a pathname for the job
data. In a shared file system, the client, scheduler, and all worker nodes
must have access to this location. In a nonshared file system, only the
MATLAB client and scheduler access job data in this location.

If DataLocation is not set, the default location for job data is the
current working directory of the MATLAB client the first time you use
findResource to create an object for this type of scheduler. All settable
property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the
object from the client workspace with delete or clear all.

Use a structure to specify the DataLocation in an environment of
mixed platforms. The fields for the structure are named pc and unix.
Each node then uses the field appropriate for its platform. See the
examples below.

Examples Set the DataLocation property for a UNIX cluster.

sch = findResource('scheduler','name','LSF')
set(sch, 'DataLocation','/depot/jobdata')

14-16

DataLocation

Use a structure to set the DataLocation property for a mixed platform
cluster.

d = struct('pc', '\\ourdomain\depot\jobdata', ...
'unix', '/depot/jobdata')

set(sch, 'DataLocation', d)

See Also Properties

HasSharedFilesystem, PathDependencies

14-17

EnvironmentSetMethod

Purpose Specify means of setting environment variables for mpiexec scheduler

Description The mpiexec scheduler needs to supply environment variables to the
MATLAB processes (labs) that it launches. There are two means
by which it can do this, determined by the EnvironmentSetMethod
property.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Values A value of '-env' instructs the mpiexec scheduler to insert into the
mpiexec command line additional directives of the form -env VARNAME
value.

A value of 'setenv' instructs the mpiexec scheduler to set the
environment variables in the environment that launches mpiexec.

14-18

Error

Purpose Task error information

Description Error contains a structure which is the output from execution of the
lasterror command if an error occurs during the task evaluation. The
structure contains the following fields:

Field Name Description

message Character array containing the text of the error
message.

identifier Character array containing the message identifier
of the error message. If the last error issued by
MATLAB had no message identifier, then the
identifier field is an empty character array.

stack Structure providing information on the location of
the error. The structure has fields file, name, and
line, and is the same as the structure returned by
the dbstack function. If lasterror returns no stack
information, stack is a 0-by-1 structure having the
same three fields.

Characteristics Usage Task object

Read-only Always

Data type Structure

Values Error is empty before an attempt to run a task. Error remains empty if
the evaluation of a task object’s function does not produce an error or if
a task does not complete because of cancellation or worker crash.

See Also Properties

ErrorIdentifier, ErrorMessage, Function

14-19

ErrorIdentifier

Purpose Task error identifier

Description ErrorIdentifier contains the identifier output from execution of the
lasterror command if an error occurs during the task evaluation, or
an identifier indicating that the task did not complete.

Characteristics Usage Task object

Read-only Always

Data type String

Values ErrorIdentifier is empty before an attempt to run a task, and remains
empty if the evaluation of a task object’s function does not produce an
error or if the error did not provide an identifier. If a task completes,
ErrorIdentifier has the same value as the identifier field of the
Error property. If a task does not complete because of cancellation or
a worker crash, ErrorIdentifier is set to indicate that fact, and the
Error property is left empty.

See Also Properties

Error, ErrorMessage, Function

14-20

ErrorMessage

Purpose Message from task error

Description ErrorMessage contains the message output from execution of the
lasterror command if an error occurs during the task evaluation, or a
message indicating that the task did not complete.

Characteristics Usage Task object

Read-only Always

Data type String

Values ErrorMessage is empty before an attempt to run a task, and remains
empty if the evaluation of a task object’s function does not produce an
error or if the error did not provide an message. If a task completes,
ErrorMessage has the same value as the message field of the Error
property. If a task does not complete because of cancellation or a worker
crash, ErrorMessage is set to indicate that fact, and the Error property
is left empty.

Examples Retrieve the error message from a task object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
a = [1 2 3 4]; %Note: matrix not square
t = createTask(j, @inv, 1, {a});
submit(j)
get(t,'ErrorMessage')
ans =
Error using ==> inv
Matrix must be square.

See Also Properties

Error, ErrorIdentifier, Function

14-21

FileDependencies

Purpose Directories and files that worker can access

Description FileDependencies contains a list of directories and files that the
worker will need to access for evaluating a job’s tasks.

The value of the property is defined by the client session. You set the
value for the property as a cell array of strings. Each string is an
absolute or relative pathname to a directory or file. The toolbox makes
a zip file of all the files and directories referenced in the property, and
stores it on the job manager machine.

The first time a worker evaluates a task for a particular job, the job
manager passes to the worker the zip file of the files and directories in
the FileDependencies property. On the worker, the file is unzipped, and
a directory structure is created that is exactly the same as that accessed
on the client machine where the property was set. Those entries listed
in the property value are added to the path in the MATLAB worker
session. (The subdirectories of the entries are not added to the path,
even though they are included in the directory structure.)

When the worker runs subsequent tasks for the same job, it uses the
directory structure already set up by the job’s FileDependencies
property for the first task it ran for that job.

Characteristics Usage Job object

Read-only After job is submitted

Data type Cell array of strings

Values The value of FileDependencies is empty by default. If a pathname that
does not exist is specified for the property value, an error is generated.

Remarks The default limitation on the size of data transfers via the
FileDependencies property is approximately 50 MB. For information
on increasing this limit, see “Object Data Size Limitations” on page

14-22

FileDependencies

2-29. For alternative means of making data available to workers, see
“Sharing Code” on page 6-25.

Examples Make available to a job’s workers the contents of the directories fd1
and fd2, and the file fdfile1.m.

set(job1,'FileDependencies',{'fd1' 'fd2' 'fdfile1.m'})
get(job1,'FileDependencies')
ans =

'fd1'
'fd2'
'fdfile1.m'

See Also Functions

getFileDependencyDir, jobStartup, taskFinish, taskStartup

Properties

PathDependencies

14-23

FinishedFcn

Purpose Specify callback to execute after task or job runs

Description The callback will be executed in the local MATLAB session, that is, the
session that sets the property, the MATLAB client.

Characteristics Usage Task object or job object

Read-only Never

Data type Callback

Values FinishedFcn can be set to any valid MATLAB callback value.

The callback follows the same model as callbacks for Handle Graphics®,
passing to the callback function the object (job or task) that makes the
call and an empty argument of event data.

Examples Create a job and set its FinishedFcn property using a function handle
to an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');

set(j, 'FinishedFcn', ...
@(job,eventdata) disp([job.Name ' ' job.State]));

Create a task whose FinishFcn is a function handle to a separate
function.

createTask(j, @rand, 1, {2,4}, ...
'FinishedFcn', @clientTaskCompleted);

14-24

FinishedFcn

Create the function clientTaskCompleted.m on the path of the MATLAB
client.

function clientTaskCompleted(task,eventdata)
disp(['Finished task: ' num2str(task.ID)])

Run the job and note the output messages from the job and task
FinishedFcn callbacks.

submit(j)
Finished task: 1
Job_52a finished

See Also Properties

QueuedFcn, RunningFcn

14-25

FinishTime

Purpose When task or job finished

Description FinishTime holds a date number specifying the time when a task or job
finished executing, in the format 'day mon dd hh:mm:ss tz yyyy'.

If a task or job is stopped or is aborted due to an error condition,
FinishTime will hold the time when the task or job was stopped or
aborted.

Characteristics Usage Task object or job object

Read-only Always

Data type String

Values FinishTime is assigned the job manager’s system time when the task
or job has finished.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j,'finished')
get(j,'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j,'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

14-26

FinishTime

See Also Functions

cancel, submit

Properties

CreateTime, StartTime, SubmitTime

14-27

Function

Purpose Function called when evaluating task

Description Function indicates the function performed in the evaluation of a task.
You set the function when you create the task using createTask.

Characteristics Usage Task object

Read-only While task is running or finished

Data type String or function handle

See Also Functions

createTask

Properties

InputArguments, NumberOfOutputArguments, OutputArguments

14-28

HasSharedFilesystem

Purpose Specify whether nodes share data location

Description HasSharedFilesystem determines whether the job data stored in
the location identified by the DataLocation property can be accessed
from all nodes in the cluster. If HasSharedFilesystem is false (0),
the scheduler handles data transfers to and from the worker nodes.
If HasSharedFilesystem is true (1), the workers access the job data
directly.

Characteristics Usage Scheduler object

Read-only Never

Data type Logical

Values The value of HasSharedFilesystem can be set to true (or logical 1) or
false (or logical 0). When you perform get on the property, the value
returned is logical 1 or logical 0.

See Also Properties

DataLocation, FileDependencies, PathDependencies

14-29

HostAddress

Purpose IP address of host running job manager or worker session

Description HostAddress indicates the numerical IP address of the computer
running the job manager or worker session to which the job manager
object or worker object refers. You can match the HostAddress property
to find a desired job manager or worker when creating an object with
findResource.

Characteristics Usage Job manager object or worker object

Read-only Always

Data type Cell array of strings

Examples Create a job manager object and examine its HostAddress property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'HostAddress')
ans =

123.123.123.123

See Also Functions

findResource

Properties

HostName

14-30

HostName

Purpose Name of host running job manager or worker session

Description You can match the HostName property to find a desired job manager
or worker when creating the job manager or worker object with
findResource.

Characteristics Usage Job manager object or worker object

Read-only Always

Data type String

Examples Create a job manager object and examine its HostName property.

jm = findResource('scheduler','type','jobmanager', ...
'Name', 'MyJobManager')

get(jm, 'HostName')
ans =
JobMgrHost

See Also Functions

findResource

Properties

HostAddress

14-31

ID

Purpose Object identifier

Description Each object has a unique identifier within its parent object. The ID
value is assigned at the time of object creation. You can use the ID
property value to distinguish one object from another, such as different
tasks in the same job.

Characteristics Usage Job object or task object

Read-only Always

Data type Double

Values The first job created in a job manager has the ID value of 1, and jobs are
assigned ID values in numerical sequence as they are created after that.

The first task created in a job has the ID value of 1, and tasks are
assigned ID values in numerical sequence as they are created after that.

Examples Examine the ID property of different objects.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm)
createTask(j, @rand, 1, {2,4});
createTask(j, @rand, 1, {2,4});
tasks = get(j, 'Tasks');
get(tasks, 'ID')
ans =

[1]
[2]

The ID values are the only unique properties distinguishing these two
tasks.

14-32

ID

See Also Functions

createJob, createTask

Properties

Jobs, Tasks

14-33

IdleWorkers

Purpose Idle workers available to run tasks

Description The IdleWorkers property value indicates which workers are currently
available to the job manager for the performance of job tasks.

Characteristics Usage Job manager object

Read-only Always

Data type Array of worker objects

Values As workers complete tasks and assume new ones, the lists of workers
in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as a
busy or idle worker does not get updated until the job manager runs the
next job and tries to send a task to that worker.

Examples Examine which workers are available to a job manager for immediate
use to perform tasks.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, ClusterSize, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

14-34

InputArguments

Purpose Input arguments to task object

Description InputArguments is a 1-by-N cell array in which each element is an
expected input argument to the task function. You specify the input
arguments when you create a task with the createTask function.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Cell array

Values The forms and values of the input arguments are totally dependent
on the task function.

Examples Create a task requiring two input arguments, then examine the task’s
InputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t, 'InputArguments')
ans =

[2] [4]

See Also Functions

createTask

Properties

Function, OutputArguments

14-35

JobData

Purpose Data made available to all workers for job’s tasks

Description The JobData property holds data that eventually gets stored in the local
memory of the worker machines, so that it does not have to be passed
to the worker for each task in a job that the worker evaluates. Passing
the data only once per job to each worker is more efficient than passing
data with each task.

Note, that to access the data contained in a job’s JobData property,
the worker session evaluating the task needs to have access to the job,
which it gets from a call to the function getCurrentJob, as discussed in
the example below.

Characteristics Usage Job object

Read-only After job is submitted

Data type Any type

Values JobData is an empty vector by default.

Examples Create job1 and set its JobData property value to the contents of
array1.

job1 = createJob(jm)
set(job1, 'JobData', array1)
createTask(job1, @myfunction, 1, {task_data})

Now the contents of array1 will be available to all the tasks in the job.
Because the job itself must be accessible to the tasks, myfunction must
include a call to the function getCurrentJob. That is, the task function
myfunction needs to call getCurrentJob to get the job object through
which it can get the JobData property.

See Also Functions

createJob, createTask

14-36

JobManager

Purpose Job manager that this worker is registered with

Description JobManager indicates the job manager that the worker that the worker
is registered with.

Characteristics Usage Worker object

Read-only Always

Data type Job manager object

Values The value of JobManager is always a single job manager object.

See Also Properties

BusyWorkers, IdleWorkers

14-37

Jobs

Purpose Jobs contained in job manager service or in scheduler’s data location

Description The Jobs property contains an array of all the job objects in a scheduler.
Job objects will be in the order indicated by their ID property, consistent
with the sequence in which they were created, regardless of their State.

Characteristics Usage Job manager or scheduler object

Read-only Always

Data type Array of job objects

Examples Examine the Jobs property for a job manager, and use the resulting
array of objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j1 = createJob(jm);
j2 = createJob(jm);
j3 = createJob(jm);
j4 = createJob(jm);
.
.
.
all_jobs = get(jm, 'Jobs')
set(all_jobs, 'MaximumNumberOfWorkers', 10);

The last line of code sets the MaximumNumberOfWorkers property value
to 10 for each of the job objects in the array all_jobs.

See Also Functions

createJob, destroy, findJob, submit

Properties

Tasks

14-38

MasterName

Purpose Name of LSF master node

Description MasterName indicates the name of the LSF cluster master node.

Characteristics Usage LSF scheduler object

Read-only Always

Data type String

Values MasterName is a string of the full name of the master node.

See Also Properties

ClusterName

14-39

MatlabCommandToRun

Purpose MATLAB command that generic scheduler runs to start lab

Description MatlabCommandToRun indicates the command that the scheduler uses
to start a MATLAB worker on a cluster node for a task evaluation.
To ensure that the correct MATLAB runs, your scheduler script can
construct a path to the executable by concatenating the values of
ClusterMatlabRoot and MatlabCommandToRun into a single string.

Characteristics Usage Generic scheduler object

Read-only Always

Data type String

Values MatlabCommandToRun is set by the toolbox when the scheduler object
is created.

See Also Properties

ClusterMatlabRoot, SubmitFcn

14-40

MaximumNumberOfWorkers

Purpose Specify maximum number of workers to perform job tasks

Description With MaximumNumberOfWorkers you specify the greatest number of
workers to be used to perform the evaluation of the job’s tasks at any one
time. Tasks may be distributed to different workers at different times
during execution of the job, so that more than MaximumNumberOfWorkers
might be used for the whole job, but this property limits the portion of
the cluster used for the job at any one time.

Characteristics Usage Job object

Read-only After job is submitted

Data type Double

Values You can set the value to anything equal to or greater than the value of
the MinimumNumberOfWorkers property.

Examples Set the maximum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'MaximumNumberOfWorkers', 12);

In this example, the job will use no more than 12 workers, regardless
of how many tasks are in the job and how many workers are available
on the cluster.

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

14-41

MinimumNumberOfWorkers

Purpose Specify minimum number of workers to perform job tasks

Description With MinimumNumberOfWorkers you specify the minimum number
of workers to perform the evaluation of the job’s tasks. When the
job is queued, it will not run until at least this many workers are
simultaneously available.

If MinimumNumberOfWorkers workers are available to the job manager,
but some of the task dispatches fail due to network or node failures,
such that the number of tasks actually dispatched is less than
MinimumNumberOfWorkers, the job will be canceled.

Characteristics Usage Job object

Read-only After job is submitted

Data type Double

Values The default value is 1. You can set the value anywhere from 1 up to or
equal to the value of the MaximumNumberOfWorkers property.

Examples Set the minimum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'MinimumNumberOfWorkers', 6);

In this example, when the job is queued, it will not begin running tasks
until at least six workers are available to perform task evaluations.

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers

14-42

MpiexecFileName

Purpose Specify pathname of executable mpiexec command

Description MpiexecFileName specifies which mpiexec command is executed to
run your jobs.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Remarks See your network administrator to find out which mpiexec you should
run. The default value of the property points the mpiexec included in
your MATLAB installation.

See Also Functions

mpiLibConf, mpiSettings

Properties

SubmitArguments

14-43

Name

Purpose Name of job manager, job, or worker object

Description The descriptive name of a job manager or worker is set when its
service is started, as described in "Customizing Engine Services" in
the MATLAB Distributed Computing Engine System Administrator’s
Guide. This is reflected in the Name property of the object that
represents the service. You can use the name of the job manager or
worker service to search for the particular service when creating an
object with the findResource function.

You can configure Name as a descriptive name for a job object at any
time before the job is submitted to the queue.

Characteristics Usage Job manager object, job object, or worker object

Read-only Always for a job manager or worker object; after
job object is submitted

Data type String

Values By default, a job object is constructed with a Name created by
concatenating the Name of the job manager with _job.

Examples Construct a job manager object by searching for the name of the service
you want to use.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager');

Construct a job and note its default Name.

j = createJob(jm);
get(j, 'Name')
ans =

MyJobManager_job

14-44

Name

Change the job’s Name property and verify the new setting.

set(j,'Name','MyJob')
get(j,'Name')
ans =

MyJob

See Also Functions

findResource, createJob

14-45

NumberOfBusyWorkers

Purpose Number of workers currently running tasks

Description The NumberOfBusyWorkers property value indicates how many workers
are currently running tasks for the job manager.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The value of NumberOfBusyWorkers can range from 0 up to the total
number of workers registered with the job manager.

Examples Examine the number of workers currently running tasks for a job
manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfBusyWorkers')

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfIdleWorkers

14-46

NumberOfIdleWorkers

Purpose Number of idle workers available to run tasks

Description The NumberOfIdleWorkers property value indicates how many workers
are currently available to the job manager for the performance of job
tasks.

If the NumberOfIdleWorkers is equal to or greater than the
MinimumNumberOfWorkers of the job at the top of the queue, that job can
start running.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The value of NumberOfIdleWorkers can range from 0 up to the total
number of workers registered with the job manager.

Examples Examine the number of workers available to a job manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers

14-47

NumberOfOutputArguments

Purpose Number of arguments returned by task function

Description When you create a task with the createTask function, you define how
many output arguments are expected from the task function.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Double

Values A matrix is considered one argument.

Examples Create a task and examine its NumberOfOutputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t,'NumberOfOutputArguments')
ans =

1

This example returns a 2-by-4 matrix, which is a single argument. The
NumberOfOutputArguments value is set by the createTask function, as
the argument immediately after the task function definition; in this
case, the 1 following the @rand argument.

See Also Functions

createTask

Properties

OutputArguments

14-48

OutputArguments

Purpose Data returned from execution of task

Description OutputArguments is a 1-by-N cell array in which each element
corresponds to each output argument requested from task evaluation.
If the task’s NumberOfOutputArguments property value is 0, or if the
evaluation of the task produced an error, the cell array is empty.

Characteristics Usage Task object

Read-only Always

Data type Cell array

Values The forms and values of the output arguments are totally dependent
on the task function.

Examples Create a job with a task and examine its result after running the job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
submit(j)

When the job is finished, retrieve the results as a cell array.

result = get(t, 'OutputArguments')

Retrieve the results from all the tasks of a job.

alltasks = get(j, 'Tasks')
allresults = get(alltasks, 'OutputArguments')

Because each task returns a cell array, allresults is a cell array of
cell arrays.

14-49

OutputArguments

See Also Functions

createTask, getAllOutputArguments

Properties

Function, InputArguments, NumberOfOutputArguments

14-50

ParallelSubmissionWrapperScript

Purpose Script LSF scheduler runs to start labs

Description ParallelSubmissionWrapperScript identifies the script for the LSF
scheduler to run when starting labs for a parallel job.

Characteristics Usage LSF scheduler object

Read-only Never

Data type String

Values ParallelSubmissionWrapperScript is a string specifying the full path
to the script. This property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly. The property value then points to the appropriate wrapper
script in matlabroot/toolbox/distcomp/bin/util.

See Also Functions

createParallelJob, setupForParallelExecution, submit

Properties

ClusterName, ClusterMatlabRoot, MasterName, SubmitArguments

14-51

ParallelSubmitFcn

Purpose Specify function to run when parallel job submitted to generic scheduler

Description ParallelSubmitFcn identifies the function to run when you submit a
parallel job to the generic scheduler. The function runs in the MATLAB
client. This user-defined parallel submit function provides certain job
and task data for the MATLAB worker, and identifies a corresponding
decode function for the MATLAB worker to run.

For more information, see “MATLAB Client Submit Function” on page
6-31.

Characteristics Usage Generic scheduler object

Read-only Never

Data type String

Values ParallelSubmitFcn can be set to any valid MATLAB callback value
that uses the user-defined parallel submit function.

For more information about parallel submit functions and where to
find example templates you can use, see “Using the Generic Scheduler
Interface” on page 7-7.

See Also Functions

createParallelJob, submit

Properties

MatlabCommandToRun, SubmitFcn

14-52

Parent

Purpose Parent object of job or task

Description A job’s Parent property indicates the job manager or scheduler object
that contains the job. A task’s Parent property indicates the job object
that contains the task.

Characteristics Usage Job object or task object

Read-only Always

Data type Job manager, scheduler, or job object

See Also Properties

Jobs, Tasks

14-53

PathDependencies

Purpose Specify directories to add to MATLAB worker path

Description PathDependencies identifies directories to be added to the path of
MATLAB worker sessions for this job.

Characteristics Usage Scheduler job object

Read-only Never

Data type Cell array of strings

Values PathDependencies is empty by default. For a mixed-platform
environment, the strings can specify both UNIX and Windows paths;
those not appropriate or not found for a particular node generate
warnings and are ignored.

Remarks For alternative means of making data available to workers, see “Sharing
Code” on page 6-25.

Examples Set the MATLAB worker path in a mixed-platform environment to use
functions in both the central repository (/central/funcs) and the
department archive (/dept1/funcs).

sch = findResource('scheduler','name','LSF')
job1 = createJob(sch)
p = {'/central/funcs','/dept1/funcs', ...

'\\OurDomain\central\funcs','\\OurDomain\dept1\funcs'}
set(job1, 'PathDependencies', p)

See Also Properties

ClusterMatlabRoot, FileDependencies

14-54

PreviousJob

Purpose Job whose task this worker previously ran

Description PreviousJob indicates the job whose task the worker most recently
evaluated.

Characteristics Usage Worker object

Read-only Always

Data type Job object

Values PreviousJob is an empty vector until the worker finishes evaluating
its first task.

See Also Properties

CurrentJob, CurrentTask, PreviousTask, Worker

14-55

PreviousTask

Purpose Task that this worker previously ran

Description PreviousTask indicates the task that the worker most recently
evaluated.

Characteristics Usage Worker object

Read-only Always

Data type Task object

Values PreviousTask is an empty vector until the worker finishes evaluating
its first task.

See Also Properties

CurrentJob, CurrentTask, PreviousJob, Worker

14-56

QueuedFcn

Purpose Specify M-file function to execute when job is submitted to job manager
queue

Description QueuedFcn specifies the M-file function to execute when a job is
submitted to a job manager queue.

The callback will be executed in the local MATLAB session, that is,
the session that sets the property.

Characteristics Usage Job object

Read-only Never

Data type Callback

Values QueuedFcn can be set to any valid MATLAB callback value.

Examples Create a job and set its QueuedFcn property, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...

'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');

set(j, 'QueuedFcn', ...

@(job,eventdata) disp([job.Name ' now queued for execution.']))

.

.

.

submit(j)

Job_52a now queued for execution.

See Also Functions

submit

Properties

FinishedFcn, RunningFcn

14-57

RestartWorker

Purpose Specify whether to restart MATLAB workers before evaluating job tasks

Description In some cases, you might want to restart MATLAB on the workers
before they evaluate any tasks in a job. This action resets defaults,
clears the workspace, frees available memory, and so on.

Characteristics Usage Job object

Read-only After job is submitted

Data type Logical

Values Set RestartWorker to true (or logical 1) if you want the job to restart
the MATLAB session on any workers before they evaluate their first
task for that job. The workers are not reset between tasks of the same
job. Set RestartWorker to false (or logical 0) if you do not want
MATLAB restarted on any workers. When you perform get on the
property, the value returned is logical 1 or logical 0. The default value is
0, which does not restart the workers.

Examples Create a job and set it so that MATLAB workers are restarted before
evaluating tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'RestartWorker', true)
.
.
.
submit(j)

See Also Functions

submit

14-58

RunningFcn

Purpose Specify M-file function to execute when job or task starts running

Description The callback will be executed in the local MATLAB session, that is,
the session that sets the property.

Characteristics Usage Task object or job object

Read-only Never

Data type Callback

Values RunningFcn can be set to any valid MATLAB callback value.

Examples Create a job and set its QueuedFcn property, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');
set(j, 'RunningFcn', ...

@(job,eventdata) disp([job.Name ' now running.']))
.
.
.
submit(j)
Job_52a now running.

See Also Functions

submit

Properties

FinishedFcn, QueuedFcn

14-59

SchedulerHostname

Purpose Name of host running CCS scheduler

Description SchedulerHostname indicates the name of the node on which the CCS
scheduler is running.

Characteristics Usage CCS scheduler object

Read-only Never

Data type String

Values SchedulerHostname is a string of the full name of the scheduler node.

See Also Properties

ClusterOsType

14-60

StartTime

Purpose When job or task started

Description StartTime holds a date number specifying the time when a job or task
starts running, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object or task object

Read-only Always

Data type String

Values StartTime is assigned the job manager’s system time when the task
or job has started running.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j, 'finished')
get(j, 'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004

14-61

StartTime

See Also Functions

submit

Properties

CreateTime, FinishTime, SubmitTime

14-62

State

Purpose Current state of task, job, job manager, or worker

Description The State property reflects the stage of an object in its life cycle,
indicating primarily whether or not it has yet been executed. The
possible State values for all Distributed Computing Toolbox objects are
discussed below in the “Values” section.

Note The State property of the task object is different than the State
property of the job object. For example, a task that is finished may be
part of a job that is running if other tasks in the job have not finished.

Characteristics Usage Task, job, job manager, or worker object

Read-only Always

Data type String

Values Task Object

For a task object, possible values for State are

• pending — Tasks that have not yet started to evaluate the task
object’s Function property are in the pending state.

• running — Task objects that are currently in the process of
evaluating the Function property are in the running state.

• finished — Task objects that have finished evaluating the task
object’s Function property are in the finished state.

• unavailable — Communication cannot be established with the job
manager.

14-63

State

Job Object

For a job object, possible values for State are

• pending — Job objects that have not yet been submitted to a job
queue are in the pending state.

• queued — Job objects that have been submitted to a job queue but
have not yet started to run are in the queued state.

• running — Job objects that are currently in the process of running
are in the running state.

• finished — Job objects that have completed running all their tasks
are in the finished state.

• failed — Job objects when using a third-party scheduler and the job
could not run because of unexpected or missing information.

• unavailable — Communication cannot be established with the job
manager.

Job Manager

For a job manager, possible values for State are

• running — A started job queue will execute jobs normally.

• paused — The job queue is paused.

• unavailable — Communication cannot be established with the job
manager.

When a job manager first starts up, the default value for State is
running.

14-64

State

Worker

For a worker, possible values for State are

• running — A started job queue will execute jobs normally.

• unavailable — Communication cannot be established with the
worker.

Examples Create a job manager object representing a job manager service, and
create a job object; then examine each object’s State property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'State')
ans =

running
j = createJob(jm);
get(j, 'State')
ans =

pending

See Also Functions

createJob, createTask, findResource, pause, resume, submit

14-65

SubmitArguments

Purpose Specify additional arguments to use when submitting job to LSF or
mpiexec scheduler

Description SubmitArguments is simply a string that is passed via the bsub
command to the LSF scheduler at submit time, or passed to the mpiexec
command if using an mpiexec scheduler.

Characteristics Usage LSF or mpiexec scheduler object

Read-only Never

Data type String

Values LSF

Useful SubmitArguments values might be '-m "machine1 machine2"'
to indicate that your LSF scheduler should use only the named
machines to run the job, or '-R "type==LINUX64"' to use only Linux
64-bit machines. Note that by default the LSF scheduler will attempt
to run your job on only nodes with an architecture similar to the local
machine’s unless you specify '-R "type==any"'.

mpiexec

The following SubmitArguments values might be useful when using an
mpiexec scheduler. They can be combined to form a single string when
separated by spaces.

Value Description

-phrase MATLAB Use MATLAB as passphrase to connect with
smpd.

-noprompt Suppress prompting for any user
information.

-localonly Run only on the local computer.

14-66

SubmitArguments

Value Description

-host <hostname> Run only on the identified host.

-machinefile
<filename>

Run only on the nodes listed in the specified
file (one hostname per line).

For a complete list, see the command-line help for the mpiexec
command:

mpiexec -help
mpiexec -help2

See Also Functions

submit

Properties

MatlabCommandToRun, MpiexecFileName

14-67

SubmitFcn

Purpose Specify function to run when job submitted to generic scheduler

Description SubmitFcn identifies the function to run when you submit a job to
the generic scheduler. The function runs in the MATLAB client. This
user-defined submit function provides certain job and task data for
the MATLAB worker, and identifies a corresponding decode function
for the MATLAB worker to run.

For further information, see “MATLAB Client Submit Function” on
page 6-31.

Characteristics Usage Generic scheduler object

Read-only Never

Data type String

Values SubmitFcn can be set to any valid MATLAB callback value that uses
the user-defined submit function.

For a description of the user-defined submit function, how it is used, and
its relationship to the worker decode function, see “Using the Generic
Scheduler Interface” on page 6-30.

See Also Functions

submit

Properties

MatlabCommandToRun

14-68

SubmitTime

Purpose When job was submitted to queue

Description SubmitTime holds a date number specifying the time
when a job was submitted to the job queue, in the format
'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object

Read-only Always

Data type String

Values SubmitTime is assigned the job manager’s system time when the job is
submitted.

Examples Create and submit a job, then get its SubmitTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @rand, 1, {12,12});
submit(j)
get(j, 'SubmitTime')
ans =
Wed Jun 30 11:33:21 EDT 2004

See Also Functions

submit

Properties

CreateTime, FinishTime, StartTime

14-69

Tag

Purpose Specify label to associate with job object

Description You configure Tag to be a string value that uniquely identifies a job
object.

Tag is particularly useful in programs that would otherwise need to
define the job object as a global variable, or pass the object as an
argument between callback routines.

You can return the job object with the findJob function by specifying
the Tag property value.

Characteristics Usage Job object

Read-only Never

Data type String

Values The default value is an empty string.

Examples Suppose you create a job object in the job manager jm.

job1 = createJob(jm);

You can assign job1 a unique label using Tag.

set(job1,'Tag','MyFirstJob')

You can identify and access job1 using the findJob function and the
Tag property value.

job_one = findJob(jm,'Tag','MyFirstJob');

See Also Functions

findJob

14-70

Tasks

Purpose Tasks contained in job object

Description The Tasks property contains an array of all the task objects in a job,
whether the tasks are pending, running, or finished. Tasks are always
returned in the order in which they were created.

Characteristics Usage Job object

Read-only Always

Data type Array of task objects

Examples Examine the Tasks property for a job object, and use the resulting array
of objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, ...)
.
.
.
createTask(j, ...)
alltasks = get(j, 'Tasks')
alltasks =

distcomp.task: 10-by-1
set(alltasks, 'Timeout', 20);

The last line of code sets the Timeout property value to 20 seconds for
each task in the job.

14-71

Tasks

See Also Functions

createTask, destroy, findTask

Properties

Jobs

14-72

Timeout

Purpose Specify time limit to complete task or job

Description Timeout holds a double value specifying the number of seconds to wait
before giving up on a task or job.

The time for timeout begins counting when the task State property
value changes from the Pending to Running, or when the job object
State property value changes from Queued to Running.

When a task times out, the behavior of the task is the same as if the
task were stopped with the cancel function, except a different message
is placed in the task object’s ErrorMessage property.

When a job times out, the behavior of the job is the same as if the job
were stopped using the cancel function, except all pending and running
tasks are treated as having timed out.

Characteristics Usage Task object or job object

Read-only While running

Data type Double

Values The default value for Timeout is large enough so that in practice, tasks
and jobs will never time out. You should set the value of Timeout to the
number of seconds you want to allow for completion of tasks and jobs.

Examples Set a job’s Timeout value to 1 minute.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'Timeout', 60)

14-73

Timeout

See Also Functions

submit

Properties

ErrorMessage, State

14-74

Type

Purpose Type of scheduler object

Description Type indicates the type of scheduler object.

Characteristics Usage Scheduler object

Read-only Always

Data type String

Values Type is a string indicating the type of scheduler represented by this
object.

14-75

UserData

Purpose Specify data to associate with object

Description You configure UserData to store data that you want to associate with an
object. The object does not use this data directly, but you can access it
using the get function or dot notation.

UserData is stored in the local MATLAB client session, not in the job
manager, job data location, or worker. So, one MATLAB client session
cannot access the data stored in this property by another MATLAB
client session. Even on the same machine, if you close the client session
where UserData is set for an object, and then access the same object
from a later client session via the job manager or job data location, the
original UserData is not recovered. Likewise, commands such as

clear all
clear functions

will clear an object in the local session, permanently removing the data
in the UserData property.

Characteristics Usage Scheduler object, job object, or task object

Read-only Never

Data type Any type

Values The default value is an empty vector.

Examples Suppose you create the job object job1.

job1 = createJob(jm);

You can associate data with job1 by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
job1.UserData = coeff

14-76

UserData

get(job1,'UserData')
ans =

a: 1
b: -1.2500

14-77

UserName

Purpose User who created job

Description The UserName property value is a string indicating the login name of
the user who created the job.

Characteristics Usage Job object

Read-only Always

Data type String

Examples Examine a job to see who created it.

get(job1, 'UserName')
ans =
jsmith

14-78

Worker

Purpose Worker session that performed task

Description The Worker property value is an object representing the worker session
that evaluated the task.

Characteristics Usage Task object

Read-only Always

Data type Worker object

Values Before a task is evaluated, its Worker property value is an empty vector.

Examples Find out which worker evaluated a particular task.

submit(job1)
waitForState(job1,'finished')
t1 = findTask(job1,'ID',1)
t1.Worker.Name
ans =
node55_worker1

See Also Properties

Tasks

14-79

WorkerMachineOsType

Purpose Specify operating system of nodes on which mpiexec scheduler will start
labs

Description WorkerMachineOsType specifies the operating system of the nodes that
an mpiexec scheduler will start labs on for the running of a parallel job.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Values The only value the property can have is 'pc' or 'unix'. The nodes of
the labs running an mpiexec job must all be the same platform. The
only heterogeneous mixing allowed in the cluster for the same mpiexec
job is Intel Macintosh with 32-bit Linux.

See Also Properties

HostAddress, HostName

14-80

Glossary

Glossary

CHECKPOINTBASE
The name of the parameter in the mdce_def file that defines the location
of the job manager and worker checkpoint directories.

checkpoint directory
Location where job manager checkpoint information and worker
checkpoint information is stored.

client
The MATLAB session that defines and submits the job. This is the
MATLAB session in which the programmer usually develops and
prototypes applications. Also known as the MATLAB client.

client computer
The computer running the MATLAB client.

cluster
A collection of computers that are connected via a network and intended
for a common purpose.

coarse-grained application
An application for which run time is significantly greater than
the communication time needed to start and stop the program.
Coarse-grained distributed applications are also called embarrassingly
parallel applications.

computer
A system with one or more processors.

distributed application
The same application that runs independently on several nodes,
possibly with different input parameters. There is no communication,
shared data, or synchronization points between the nodes. Distributed
applications can be either coarse-grained or fine-grained.

distributed array
An array partitioned into segments, with each segment residing in the
workspace of a different lab.

Glossary-1

Glossary

distributed computing
Computing with distributed applications, running the application on
several nodes simultaneously.

distributed computing demos
Demonstration programs that use Distributed Computing Toolbox, as
opposed to sequential demos.

DNS
Domain Name System. A system that translates Internet domain
names into IP addresses.

dynamic licensing
The ability of a MATLAB worker or lab to employ all the functionality
you are licensed for in the MATLAB client, while checking out
only an engine license. When a job is created in the MATLAB
client with Distributed Computing Toolbox, the products for which
the client is licensed will be available for all workers or labs that
evaluate tasks for that job. This allows you to run any code on
the cluster that you are licensed for on your MATLAB client,
without requiring extra licenses for the worker beyond MATLAB
Distributed Computing Engine. For a list of products that are
not eligible for use with Distributed Computing Toolbox, see
http://www.mathworks.com/products/ineligible_programs/.

fine-grained application
An application for which run time is significantly less than the
communication time needed to start and stop the program. Compare to
coarse-grained applications.

head node
Usually, the node of the cluster designated for running the job manager
and license manager. It is often useful to run all the nonworker related
processes on a single machine.

heterogeneous cluster
A cluster that is not homogeneous.

homogeneous cluster
A cluster of identical machines, in terms of both hardware and software.

Glossary-2

http://www.mathworks.com/products/ineligible_programs/

Glossary

job
The complete large-scale operation to perform in MATLAB, composed
of a set of tasks.

job manager
The MathWorks process that queues jobs and assigns tasks to workers.
A third-party process that performs this function is called a scheduler.
The general term "scheduler" can also refer to a job manager.

job manager checkpoint information
Snapshot of information necessary for the job manager to recover from
a system crash or reboot.

job manager database
The database that the job manager uses to store the information about
its jobs and tasks.

job manager lookup process
The process that allows clients, workers, and job managers to find each
other. It starts automatically when the job manager starts.

lab
When workers start, they work independently by default. They can
then connect to each other and work together as peers, and are then
referred to as labs.

LOGDIR
The name of the parameter in the mdce_def file that defines the
directory where logs are stored.

MATLAB client
See client.

MathWorks job manager
See job manager.

MATLAB worker
See worker.

Glossary-3

Glossary

mdce
The service that has to run on all machines before they can run a job
manager or worker. This is the engine foundation process, making sure
that the job manager and worker processes that it controls are always
running.

Note that the program and service name is all lowercase letters.

mdce_def file
The file that defines all the defaults for the mdce processes by allowing
you to set preferences or definitions in the form of parameter values.

MPI
Message Passing Interface, the means by which labs communicate with
each other while running tasks in the same job.

node
A computer that is part of a cluster.

parallel application
The same application that runs on several labs simultaneously, with
communication, shared data, or synchronization points between the
labs.

private array
An array which resides in the workspaces of one or more, but perhaps
not all labs. There might or might not be a relationship between the
values of these arrays among the labs.

random port
A random unprivileged TCP port, i.e., a random TCP port above 1024.

register a worker
The action that happens when both worker and job manager are started
and the worker contacts job manager.

replicated array
An array which resides in the workspaces of all labs, and whose size and
content are identical on all labs.

Glossary-4

Glossary

scheduler
The process, either third-party or the MathWorks job manager, that
queues jobs and assigns tasks to workers.

task
One segment of a job to be evaluated by a worker.

variant array
An array which resides in the workspaces of all labs, but whose content
differs on these labs.

worker
The MATLAB process that performs the task computations. Also known
as the MATLAB worker or worker process.

worker checkpoint information
Files required by the worker during the execution of tasks.

Glossary-5

Glossary

Glossary-6

Index

IndexA
arrays

distributed 8-4
local 8-10
private 8-4
replicated 8-2
types of 8-2
variant 8-3

B
BusyWorkers property 14-2

C
cancel function 12-2
CaptureCommandWindowOutput property 14-3
CCS scheduler 6-18
ccsscheduler object 10-2
cell function 12-4
clear function 12-5
ClusterMatlabRoot property 14-5
ClusterName property 14-6
ClusterOsType property 14-7
ClusterSize property 14-8
CommandWindowOutput property 14-9
Configuration property 14-11
configurations 2-6
createJob function 12-6
createParallelJob function 12-8
createTask function 12-11
CreateTime property 14-13
current working directory

MATLAB worker 2-15
CurrentJob property 14-14
CurrentTask property 14-15

D
darray function 12-14

DataLocation property 14-16
dcolon function 12-18
dcolonpartition function 12-19
dctconfig function 12-20
dctRunOnAll function 12-22
defaultParallelConfig function 12-23
demote function 12-25
destroy function 12-26
dfeval function 12-27
dfevalasync function 12-31
distribdim function 12-33
distribute function 12-34
distributed arrays

constructor functions 8-10
creating 8-7
defined 8-4
indexing 8-15
working with 8-5

drange operator
for loop 12-47

E
EnvironmentSetMethod property 14-18
Error property 14-19
ErrorIdentifier property 14-20
ErrorMessage property 14-21
eye function 12-35

F
false function 12-37
FileDependencies property 14-22
files

sharing 6-12
using an LSF scheduler 6-25

findJob function 12-39
findResource function 12-41
findTask function 12-45
FinishedFcn property 14-24

Index-1

Index

FinishTime property 14-26
for loop

distributed 12-47
Function property 14-28
functions

cancel 12-2
cell 12-4
clear 12-5
createJob 12-6
createParallelJob 12-8
createTask 12-11
darray 12-14
dcolon 12-18
dcolonpartition 12-19
dctconfig 12-20
dctRunOnAll 12-22
defaultParallelConfig 12-23
demote 12-25
destroy 12-26
dfeval 12-27
dfevalasync 12-31
distribdim 12-33
distribute 12-34
eye 12-35
false 12-37
findJob 12-39
findResource 12-41
findTask 12-45
for

distributed 12-47
drange 12-47

gather 12-49
gcat 12-51
get 12-52
getAllOutputArguments 12-54
getCurrentJob 12-56
getCurrentJobmanager 12-57
getCurrentTask 12-58
getCurrentWorker 12-59
getDebugLog 12-60

getFileDependencyDir 12-62
gop 12-63
gplus 12-65
help 12-66
Inf 12-67
inspect 12-69
isdarray 12-71
isreplicated 12-72
jobStartup 12-73
labBarrier 12-74
labBroadcast 12-75
labindex 12-77
labProbe 12-78
labReceive 12-79
labSend 12-80
labSendReceive 12-81
length 12-84
local 12-85
localspan 12-86
matlabpool 12-87
methods 12-90
mpiLibConf 12-92
mpiprofile 12-93
mpiSettings 12-98
NaN 12-100
numlabs 12-102
ones 12-103
parfor 12-105
partition 12-108
pause 12-109
pload 12-110 12-116
pmode 12-112
promote 12-115
rand 12-118
randn 12-120
redistribute 12-122
resume 12-123
set 12-124
setupForParallelExecution 12-127
size 12-129

Index-2

Index

sparse 12-130
speye 12-132
sprand 12-134
sprandn 12-136
submit 12-138
taskFinish 12-139
taskStartup 12-140
true 12-141
waitForState 12-143
zeros 12-145

G
gather function 12-49
gcat function 12-51
generic scheduler

distributed jobs 6-30
parallel jobs 7-7

genericscheduler object 10-4
get function 12-52
getAllOutputArguments function 12-54
getCurrentJob function 12-56
getCurrentJobmanager function 12-57
getCurrentTask function 12-58
getCurrentWorker function 12-59
getDebugLogp function 12-60
getFileDependencyDir function 12-62
gop function 12-63
gplus function 12-65

H
HasSharedFilesystem property 14-29
help

command-line 1-11
help function 12-66
HostAddress property 14-30
HostName property 14-31

I
ID property 14-32
IdleWorkers property 14-34
Inf function 12-67
InputArguments property 14-35
inspect function 12-69
isdarray function 12-71
isreplicated function 12-72

J
job

creating
example 6-9

creating on generic scheduler
example 6-41

creating on LSF or CCS scheduler
example 6-21

life cycle 2-4
local scheduler 6-3
submitting to generic scheduler queue 6-43
submitting to local scheduler 6-5
submitting to LSF or CCS scheduler

queue 6-23
submitting to queue 6-11

job manager
finding

example 6-3 6-7
job object 10-6
JobData property 14-36
jobmanager object 10-9
JobManager property 14-37
Jobs property 14-38
jobStartup function 12-73

L
labBarrier function 12-74
labBroadcast function 12-75
labindex function 12-77

Index-3

Index

labProbe function 12-78
labReceive function 12-79
labSend function 12-80
labSendReceive function 12-81
length function 12-84
local function 12-85
localscheduler object 10-11
localspan function 12-86
LSF scheduler 6-18
lsfscheduler object 10-13

M
MasterName property 14-39 14-60
MatlabCommandToRun property 14-40
matlabpool

getting started 3-3
matlabpool function 12-87
MaximumNumberOfWorkers property 14-41
methods function 12-90
MinimumNumberOfWorkers property 14-42
mpiexec object 10-15
MpiexecFileName property 14-43
mpiLibConf function 12-92
mpiprofile function 12-93
mpiSettings function 12-98

N
Name property 14-44
NaN function 12-100
NumberOfBusyWorkers property 14-46
NumberOfIdleWorkers property 14-47
NumberOfOutputArguments property 14-48
numlabs function 12-102

O
objects 1-8

ccsscheduler 10-2
genericscheduler 10-4

job 10-6
jobmanager 10-9
localscheduler 10-11
lsfscheduler 10-13
mpiexec 10-15
paralleljob 10-17
saving or sending 2-15
simplejob 10-20
simpleparalleljob 10-22
simpletask 10-25
task 10-27
worker 10-29

ones function 12-103
OutputArguments property 14-49

P
parallel for-loops. See parfor-loops
parallel jobs 7-2

supported schedulers 7-4
paralleljob object 10-17
ParallelSubmissionWrapperScript

property 14-51
ParallelSubmitFcn property 14-52
Parent property 14-53
parfor function 12-105
parfor-loops 3-1

break 3-9
broadcast variables 3-17
classification of variables 3-12
compared to for-loops 3-5
error handling 3-7
for-drange 3-11
global variables 3-9
improving performance 3-26
limitations 3-8
local vs. cluster workers 3-10
loop variable 3-13
MATLAB path 3-7
nested functions 3-9

Index-4

Index

nested loops 3-9
nondistributable functions 3-9
persistent variables 3-9
programming considerations 3-7
reduction assignments 3-18
reduction assignments, associativity 3-21
reduction assignments, commutativity 3-22
reduction assignments, overloading 3-23
reduction variables 3-17
release compatibility 3-11
return 3-9
sliced variables 3-14
temporary variables 3-24
transparency 3-8

partition function 12-108
PathDependencies property 14-54
pause function 12-109
platforms

supported 1-7
pload function 12-110 12-116
pmode function 12-112
PreviousJob property 14-55
PreviousTask property 14-56
programming

basic session 6-7
guidelines 2-2
local scheduler 6-2
tips 2-15

promote function 12-115
properties

BusyWorkers 14-2
CaptureCommandWindowOutput 14-3
ClusterMatlabRoot 14-5
ClusterName 14-6
ClusterOsType 14-7
ClusterSize 14-8
CommandWindowOutput 14-9
Configuration 14-11
CreateTime 14-13
CurrentJob 14-14

CurrentTask 14-15
DataLocation 14-16
EnvironmentSetMethod 14-18
Error 14-19
ErrorIdentifier 14-20
ErrorMessage 14-21
FileDependencies 14-22
FinishedFcn 14-24
FinishTime 14-26
Function 14-28
HasSharedFilesystem 14-29
HostAddress 14-30
HostName 14-31
ID 14-32
IdleWorkers 14-34
InputArguments 14-35
JobData 14-36
JobManager 14-37
Jobs 14-38
MasterName 14-39 14-60
MatlabCommandToRun 14-40
MaximumNumberOfWorkers 14-41
MinimumNumberOfWorkers 14-42
MpiexecFileName 14-43
Name 14-44
NumberOfBusyWorkers 14-46
NumberOfIdleWorkers 14-47
NumberOfOutputArguments 14-48
OutputArguments 14-49
ParallelSubmissionWrapperScript 14-51
ParallelSubmitFcn 14-52
Parent 14-53
PathDependencies 14-54
PreviousJob 14-55
PreviousTask 14-56
QueuedFcn 14-57
RestartWorker 14-58
RunningFcn 14-59
StartTime 14-61
State 14-63

Index-5

Index

SubmitArguments 14-66
SubmitFcn 14-68
SubmitTime 14-69
Tag 14-70
Tasks 14-71
Timeout 14-73
Type 14-75
UserData 14-76
UserName 14-78
Worker 14-79
WorkerMachineOsType 14-80

Q
QueuedFcn property 14-57

R
rand function 12-118
randn function 12-120
redistribute function 12-122
RestartWorker property 14-58
results

local scheduler 6-5
retrieving 6-11
retrieving from job on generic scheduler 6-43
retrieving from job on LSF scheduler 6-24

resume function 12-123
RunningFcn property 14-59

S
saving

objects 2-15
scheduler

CCS 6-18
finding, example 6-20

generic interface
distributed jobs 6-30
parallel jobs 7-7

LSF 6-18
finding, example 6-19

set function 12-124
setupForParallelExecution function 12-127
simplejob object 10-20
simpleparalleljob object 10-22
simpletask object 10-25
size function 12-129
sparse function 12-130
speye function 12-132
sprand function 12-134
sprandn function 12-136
StartTime property 14-61
State property 14-63
submit function 12-138
SubmitArguments property 14-66
SubmitFcn property 14-68
SubmitTime property 14-69

T
Tag property 14-70
task

creating
example 6-10

creating on generic scheduler
example 6-42

creating on LSF scheduler
example 6-23

local scheduler 6-5
task object 10-27
taskFinish function 12-139
Tasks property 14-71
taskStartup function 12-140
Timeout property 14-73
troubleshooting

programs 2-29
true function 12-141
Type property 14-75

Index-6

Index

U
user configurations 2-6
UserData property 14-76
UserName property 14-78

W
waitForState function 12-143

worker object 10-29
Worker property 14-79
WorkerMachineOsType property 14-80

Z
zeros function 12-145

Index-7

	toc
	Getting Started
	What Are the Distributed Computing Products?
	Determining Product Installation and Versions

	Toolbox and Engine Components
	Job Managers, Workers, and Clients
	Local Scheduler
	Third-Party Schedulers
	Choosing Between a Third-Party Scheduler and Job Manager

	Components on Mixed Platforms or Heterogeneous Clusters
	MATLAB Distributed Computing Engine Service
	Components Represented in the Client

	Using Distributed Computing Toolbox
	Example: Evaluating a Basic Function
	Example: Programming a Basic Job with a Local Scheduler

	Getting Help
	Command-Line Help
	Listing Available Functions

	Help Browser

	Programming Overview
	Program Development Guidelines
	Life Cycle of a Job
	Programming with User Configurations
	Defining Configurations
	Example — Creating and Modifying User Configurations

	Exporting and Importing Configurations
	Applying Configurations in Client Code
	Selecting a Default Configuration
	Finding Schedulers
	Setting Job and Task Properties
	Writing Scheduler-Independent Jobs

	Programming Tips and Notes
	Saving or Sending Objects
	Current Working Directory of a MATLAB Worker
	Using clear functions
	Running Tasks That Call Simulink
	Using the pause Function
	Transmitting Large Amounts of Data
	Interrupting a Job
	IPv6 on Macintosh
	Speeding Up a Job

	Using the Parallel Profiler
	Introduction
	Collecting Parallel Profile Data
	Viewing Parallel Profile Data

	Troubleshooting and Debugging
	Object Data Size Limitations
	MATLAB Clients and Workers
	Job Managers

	File Access and Permissions
	Ensuring That Windows Workers Can Access Files
	Task Function Is Unavailable
	Load and Save Errors
	Tasks or Jobs Remain in Queued State

	No Results or Failed Job
	Task Errors
	Debug Logs

	Connection Problems Between the Client and Job Manager
	Client Cannot See the Job Manager
	Job Manager Cannot See the Client

	Parallel for-Loops (parfor)
	Getting Started with parfor
	Introduction
	When to Use parfor
	Setting up MATLAB Resources: matlabpool
	Creating a parfor-Loop
	Differences Between for-Loops and parfor-Loops
	Reduction Assignments

	Programming Considerations
	MATLAB Path
	Error Handling
	Limitations
	Unambiguous Variable Names
	Transparency
	Nondistributable Functions
	Nested Functions
	Nested parfor-Loops
	Break and Return Statements
	Global and Persistent Variables

	Performance Considerations
	Slicing Arrays
	Local vs. Cluster Workers

	Compatibility with Earlier Versions of MATLAB

	Advanced Topics
	About Programming Notes
	Classification of Variables
	Overview
	Loop Variable
	Sliced Variables
	Broadcast Variables
	Reduction Variables
	Temporary Variables

	Improving Performance
	Where to Create Arrays
	Optimizing on Local vs. Cluster Workers

	Interactive Parallel Mode (pmode)
	Introduction
	Getting Started with Interactive Parallel Mode
	Parallel Command Window
	Running pmode on a Cluster
	Plotting in pmode
	Limitations and Unexpected Results
	Distributing Nonreplicated Arrays
	Using Graphics in pmode
	Displaying a GUI
	Using Simulink

	Troubleshooting
	Hostname Resolution
	Socket Connections

	Evaluating Functions in a Cluster
	Evaluating Functions Synchronously
	Scope of dfeval
	Arguments of dfeval
	Example — Using dfeval

	Evaluating Functions Asynchronously

	Programming Distributed Jobs
	Using a Local Scheduler
	Creating and Running Jobs with a Local Scheduler
	Create a Scheduler Object
	Create a Job
	Create Tasks
	Submit a Job to the Scheduler
	Retrieve the Job's Results

	Local Scheduler Behavior

	Using a Job Manager
	Creating and Running Jobs with a Job Manager
	Find a Job Manager
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job's Results

	Sharing Code
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects in the Job Manager
	What Happens When the Client Session Ends
	Recovering Objects
	Resetting Callback Properties
	Permanently Removing Objects

	Using a Fully Supported Third-Party Scheduler
	Creating and Running Jobs with an LSF or CCS Scheduler
	Find an LSF Scheduler
	Find a CCS Scheduler
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job's Results

	Sharing Code
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects
	What Happens When the Client Session Ends?
	Recovering Objects
	Destroying Jobs

	Using the Generic Scheduler Interface
	Overview
	MATLAB Client Submit Function
	Identifying the Decode Function
	Passing Job and Task Data
	Defining Scheduler Command to Run MATLAB

	Example — Writing the Submit Function
	MATLAB Worker Decode Function
	Identifying File Name and Location
	Reading the Job and Task Information

	Example — Writing the Decode Function
	Example — Programming and Running a Job in the Client
	1. Create a Scheduler Object
	2. Create a Job
	3. Create Tasks
	4. Submit a Job to the Job Queue
	5. Retrieve the Job's Results

	Supplied Submit and Decode Functions
	Summary

	Programming Parallel Jobs
	Introduction
	Using a Supported Scheduler
	Coding the Task Function
	Coding in the Client

	Using the Generic Scheduler Interface
	Introduction
	Coding in the Client
	Configuring the Scheduler Object
	Supplied Submit and Decode Functions

	Further Notes on Parallel Jobs
	Number of Tasks in a Parallel Job
	Avoiding Deadlock and Other Dependency Errors

	Parallel Math
	Array Types
	Introduction
	Nondistributed Arrays
	Replicated Arrays
	Variant Arrays
	Private Arrays

	Distributed Arrays

	Working with Distributed Arrays
	How MATLAB Distributes Arrays
	How MATLAB Displays a Distributed Array
	How Much Is Distributed to Each Lab
	Distribution of Other Data Types

	Creating a Distributed Array
	Partitioning a Larger Array
	Building from Smaller Arrays
	Using MATLAB Constructor Functions

	Local Arrays
	Creating Local Arrays from a Distributed Array
	Creating a Distributed from Local Arrays

	Obtaining Information About the Array
	Determining Whether an Array Is Distributed
	Determining the Dimension of Distribution
	Other Array Functions

	Changing the Dimension of Distribution
	Restoring the Full Array
	Indexing into a Distributed Array
	Indexing Functions

	Using a for-Loop Over a Distributed Range (for-drange)
	Parallelizing a for-Loop
	Distributed Arrays in a for-drange Loop

	Using MATLAB Functions on Distributed Arrays

	Objects — By Category
	Scheduler Objects
	Job Objects
	Task Objects
	Worker Objects

	Objects — Alphabetical List
	Functions — By Category
	General Toolbox Functions
	Job Manager Functions
	Scheduler Functions
	Job Functions
	Task Functions
	Toolbox Functions Used in Parallel Jobs and pmode
	Toolbox Functions Used in MATLAB Workers

	Functions — Alphabetical List
	Examples

	Properties — By Category
	Job Manager Properties
	Scheduler Properties
	Job Properties
	Task Properties
	Worker Properties

	Properties — Alphabetical List
	Glossary
	Index

